Towards an ecosystem capacity to stabilise organic carbon in soils

被引:14
作者
Poeplau, Christopher [1 ]
Dechow, Rene [1 ]
Begill, Neha [1 ]
Don, Axel [1 ]
机构
[1] Thunen Inst Climate Smart Agr, Bundesallee 68, D-38116 Braunschweig, Germany
关键词
mineral associated organic carbon; mineralogical capacity; net primary production; RothC; soil organic carbon; SOM fractionation; MATTER; CLAY; DECOMPOSITION; MANAGEMENT; GERMANY; MODELS;
D O I
10.1111/gcb.17453
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Soil organic carbon (SOC) accrual, and particularly the formation of fine fraction carbon (OCfine), has a large potential to act as sink for atmospheric CO2. For reliable estimates of this potential and efficient policy advice, the major limiting factors for OCfine accrual need to be understood. The upper boundary of the correlation between fine mineral particles (silt + clay) and OCfine is widely used to estimate the maximum mineralogical capacity of soils to store OCfine, suggesting that mineral surfaces get C saturated. Using a dataset covering the temperate zone and partly other climates on OCfine contents and a SOC turnover model, we provide two independent lines of evidence, that this empirical upper boundary does not indicate C saturation. Firstly, the C loading of the silt + clay fraction was found to strongly exceed previous saturation estimates in coarse-textured soils, which raises the question of why this is not observed in fine-textured soils. Secondly, a subsequent modelling exercise revealed, that for 74% of all investigated soils, local net primary production (NPP) would not be sufficient to reach a C loading of 80 g C kg-1 silt + clay, which was previously assumed to be a general C saturation point. The proportion of soils with potentially enough NPP to reach that point decreased strongly with increasing silt + clay content. High C loadings can thus hardly be reached in more fine-textured soils, even if all NPP would be available as C input. As a pragmatic approach, we introduced texture-dependent, empirical maximum C loadings of the fine fraction, that decreased from 160 g kg-1 in coarse to 75 g kg-1 in most fine-textured soils. We conclude that OCfine accrual in soils is mainly limited by C inputs and is strongly modulated by texture, mineralogy, climate and other site properties, which could be formulated as an ecosystem capacity to stabilise SOC. This article provides evidence, that the stabilisation of carbon in soils is primarily limited by carbon inputs. Using a large, temperate-zone centred dataset, and a well-established carbon model, we show that the empirical upper limit of carbon associated with silt and clay particles does not resemble a maximum mineralogical capacity. Without the given natural limitations of net primary production and C input limitation, soils could most likely stabilise and store much more soil carbon than commonly observed.image
引用
收藏
页数:13
相关论文
共 50 条
[21]   Organic carbon and silt determining subcritical water repellency and field capacity of soils in arid and semi-arid region [J].
Mao, Jiefei ;
Li, Yaoming ;
Zhang, Junfeng ;
Zhang, Kun ;
Ma, Xuexi ;
Wang, Guangyu ;
Fan, Lianlian .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
[22]   A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils [J].
Solly, Emily F. ;
Weber, Valentino ;
Zimmermann, Stephan ;
Walthert, Lorenz ;
Hagedorn, Frank ;
Schmidt, Michael W. I. .
FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2020, 3
[23]   Does an increase in soil organic carbon improve the filtering capacity of aggregated soils for organic pesticides? - A case study [J].
Aslam, T. ;
Deurer, M. ;
Mueller, K. ;
Clothier, B. E. ;
Rahman, A. ;
Northcott, G. ;
Ghani, A. .
GEODERMA, 2009, 152 (1-2) :187-193
[24]   Organic carbon fractions in temperate mangrove and saltmarsh soils [J].
Wong, V. N. L. ;
Reef, R. E. ;
Chan, C. ;
Goldsmith, K. S. .
SOIL RESEARCH, 2021, 59 (01) :34-43
[25]   Global pattern of organic carbon pools in forest soils [J].
Zhang, Yuxue ;
Guo, Xiaowei ;
Chen, Longxue ;
Kuzyakov, Yakov ;
Wang, Ruzhen ;
Zhang, Haiyang ;
Han, Xingguo ;
Jiang, Yong ;
Sun, Osbert Jianxin .
GLOBAL CHANGE BIOLOGY, 2024, 30 (06)
[26]   Organic carbon ranges in arable soils of England and Wales [J].
Verheijen, FGA ;
Bellamy, PH ;
Kibblewhite, MG ;
Gaunt, JL .
SOIL USE AND MANAGEMENT, 2005, 21 (01) :2-9
[27]   Characteristics of Variations in the Organic Carbon Fractions in Paddy Soils [J].
Wang, Xiyang ;
Yu, Dongsheng ;
Li, Chaofan ;
Pan, Yue ;
Wang, Xiuhong ;
Pan, Jianjun ;
Shi, Xuezheng .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2016, 80 (04) :983-991
[28]   Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China [J].
Wiesmeier, Martin ;
Munro, Sam ;
Barthold, Frauke ;
Steffens, Markus ;
Schad, Peter ;
Koegel-Knabner, Ingrid .
GLOBAL CHANGE BIOLOGY, 2015, 21 (10) :3836-3845
[29]   EFFECTS OF LAND USE CONVERSION ON SOIL AGGREGATE STABILITY AND ORGANIC CARBON IN DIFFERENT SOILS [J].
Ciric, Vladimir ;
Manojlovic, Maja ;
Belic, Milivoj ;
Nesic, Ljiljana ;
Seremesic, Srdan .
AGROCIENCIA, 2013, 47 (06) :539-552
[30]   No detectable upper limit of mineral-associated organic carbon in temperate agricultural soils [J].
Begill, Neha ;
Don, Axel ;
Poeplau, Christopher .
GLOBAL CHANGE BIOLOGY, 2023, 29 (16) :4662-4669