A novel 3D-printed unit cell with the compression-torsion coupling effect and negative Poisson's ratio

被引:3
作者
Hao, Na [1 ]
Zhu, Linfeng [1 ]
Wu, Zhangming [2 ,3 ]
Ke, Liaoliang [1 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Tianjin 300350, Peoples R China
[2] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Peoples R China
[3] Cardiff Univ, Sch Engn, Cardiff CF24 3AA, Wales
基金
中国国家自然科学基金;
关键词
Compression -torsion coupling; Negative Poisson's ratio; Metamaterials; 3D-printing; METAMATERIALS; LATTICE;
D O I
10.1016/j.istruc.2024.106467
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Metamaterials have received extensive research interests since they can be artificially designed to achieve unprecedent material properties beyond what we can obtain from the nature. As such, it is widely acknowledged that metamaterials have great potential application perspectives in many areas, e.g., mechanical engineering, civil engineering, aerospace, biomedical engineering, etc. Recently, mechanical metamaterials that are designed based on multi-functional properties or behaviours have received much attention due to the increasing demands of new materials with superior properties. Inspired by the grasshopper's leg, this paper proposes a novel unit cell where 3D 'zig-zag' rods are introduced to connect the circular planar elements. The mechanical behaviours of this novel unit cell under axial compression are studied both experimentally and numerically. In particular, the effect of different geometric parameters of the 3D 'zig-zag' rod on both compression-torsion coupling (CTC) and negative Poisson's ratio (NPR) are studied for this novel unit cell. Compared with previous designs, the novel unit cell proposed in this work can improve the design flexibility, achieve large NPR, strong CTC, and high loadcarrying capacity, simultaneously. Finally, this work can provide some references for designing novel metamaterials with multiple deformation mechanisms.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A novel 3D polygonal double-negative mechanical metamaterial with negative stiffness and negative Poisson's ratio
    Pan, Yi
    Zhou, Yang
    Gao, Qiang
    Sun, Beibei
    COMPOSITE STRUCTURES, 2024, 331
  • [32] 3D-printed bio-inspired zero Poisson's ratio graded metamaterials with high energy absorption performance
    Hamzehei, Ramin
    Zolfagharian, Ali
    Dariushi, Soheil
    Bodaghi, Mahdi
    SMART MATERIALS AND STRUCTURES, 2022, 31 (03)
  • [33] Novel 2D star-shaped honeycombs with enhanced effective Young's modulus and negative Poisson's ratio
    Xu, Na
    Liu, Hai-Tao
    An, Ming-Ran
    Wang, Liang
    EXTREME MECHANICS LETTERS, 2021, 43
  • [34] Numerical analysis of deformation behavior of a 3D textile structure with negative Poisson's ratio under compression
    Ge, Zhaoyang
    Hu, Hong
    Liu, Yanping
    TEXTILE RESEARCH JOURNAL, 2015, 85 (05) : 548 - 557
  • [35] A novel 3D composite structure with tunable Poisson's ratio and stiffness
    Hou, Xiaonan
    Hu, Hong
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (07): : 1565 - 1574
  • [36] Effects of structural parameters and temperature on compressive behavior of 3D printed concave negative Poisson's ratio structures
    Wang, Binyao
    Shang, Guodong
    Shi, Zhuowei
    Zhou, Fan
    Wu, Chenyu
    Yuan, Shaoqing
    Hao, Wenfeng
    Tang, Can
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [37] Preparation and flexural performance of 3D printed gradient negative Poisson's ratio structure reinforced cementitious composites
    Tang, Can
    Zhou, Yujie
    Fan, Yichang
    Liu, Junwei
    Kanwal, Humaira
    Hao, Wenfeng
    JOURNAL OF BUILDING ENGINEERING, 2025, 101
  • [38] Preparation and compressive properties of cementitious composites reinforced by 3D printed cellular structures with a negative Poisson's ratio
    Zhao, Guoqi
    Fan, Yichang
    Tang, Can
    Wei, Yuanyuan
    Hao, Wenfeng
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17
  • [39] A novel 3-D structure with tunable Poisson's ratio and adjustable thermal expansion
    Xu, Na
    Liu, Hai-Tao
    COMPOSITES COMMUNICATIONS, 2020, 22
  • [40] 3D curved-walled same-phase chiral honeycombs with controllable compression-torsion coupling effect via variable cross-section design
    Yang, Kuijian
    Rao, Liyu
    Hu, Lingling
    Li, Zekai
    THIN-WALLED STRUCTURES, 2023, 193