A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Li, Jianbo [1 ]
Xia, Fengqian [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
来源
2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023 | 2023年
关键词
Traffic flow forecast; Spatio-temporal features; Tree structure; Spatio-temporal forecasting; PREDICTION;
D O I
10.1109/MSN60784.2023.00105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting plays a crucial role in Intelligent Transportation Systems (ITS) for the development and operation of modern transportation networks. Current methods primarily rely on Graph Convolutional Neural Networks (GNN) and Recurrent Neural Networks (RNN) to predict traffic flow. However, these methods face challenges in effectively capturing hierarchical and directional information within the traffic network while quantitatively balancing the relationships between current, previous, and future time data. To address these issues, this paper introduces a novel approach called Spatio-Temporal Tree and Gauss Convolutional Network (ST-TGCN) for traffic flow forecasting. The model utilizes a tree structure to construct a planar tree matrix for extracting spatial features and employs gaussian temporal convolution to extract temporal features of traffic flow. Experimental results demonstrate that ST-TGCN outperforms baseline methods, indicating its superior predictive capabilities.
引用
收藏
页码:722 / 729
页数:8
相关论文
共 50 条
  • [21] DMSTG: Dynamic Multiview Spatio-Temporal Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Xie, Gaogang
    Chen, Jianguo
    Pei, Changhua
    Meng, Xuying
    Xie, Kun
    Zhang, Guangxing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6865 - 6880
  • [22] A spatio-temporal forecasting method of railway passenger flow
    Xu, W
    Huang, HK
    Qin, Y
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 1550 - 1554
  • [23] HiSTGNN: Hierarchical spatio-temporal graph neural network for weather forecasting
    Ma, Minbo
    Xie, Peng
    Teng, Fei
    Wang, Bin
    Ji, Shenggong
    Zhang, Junbo
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 648
  • [24] A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network
    Shang, Pan
    Liu, Xinwei
    Yu, Chengqing
    Yan, Guangxi
    Xiang, Qingqing
    Mi, Xiwei
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [25] Efficient Spatio-Temporal Randomly Wired Neural Networks for Traffic Forecasting
    Song, Li
    Bao, Kainan
    Ke, Songyu
    Li, Chunyang
    Zhang, Junbo
    Zheng, Yu
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1079 - 1086
  • [26] Spatio-temporal Fourier enhanced heterogeneous graph learning for traffic forecasting
    Zhang, Wenchang
    Wang, Hua
    Zhang, Fan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [27] MPSTAN: Metapopulation-Based Spatio-Temporal Attention Network for Epidemic Forecasting
    Mao, Junkai
    Han, Yuexing
    Wang, Bing
    ENTROPY, 2024, 26 (04)
  • [28] ST-CopulaGNN : A Multi-View Spatio-Temporal Graph Neural Network for Traffic Forecasting
    Khlaisamniang, Pitikorn
    Phoomvuthisarn, Suronapee
    35TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, SSDBM 2023, 2023,
  • [29] Enhancing Traffic Flow Forecasting With Delay Propagation: Adaptive Graph Convolution Networks for Spatio-Temporal Data
    Zheng, Yingran
    Luo, Chao
    Shao, Rui
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (01) : 650 - 660
  • [30] Spatial-temporal hypergraph convolutional network for traffic forecasting
    Zhao, Zhenzhen
    Shen, Guojiang
    Zhou, Junjie
    Jin, Junchen
    Kong, Xiangjie
    PEERJ COMPUTER SCIENCE, 2023, 9