A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Li, Jianbo [1 ]
Xia, Fengqian [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
来源
2023 19TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN 2023 | 2023年
关键词
Traffic flow forecast; Spatio-temporal features; Tree structure; Spatio-temporal forecasting; PREDICTION;
D O I
10.1109/MSN60784.2023.00105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting plays a crucial role in Intelligent Transportation Systems (ITS) for the development and operation of modern transportation networks. Current methods primarily rely on Graph Convolutional Neural Networks (GNN) and Recurrent Neural Networks (RNN) to predict traffic flow. However, these methods face challenges in effectively capturing hierarchical and directional information within the traffic network while quantitatively balancing the relationships between current, previous, and future time data. To address these issues, this paper introduces a novel approach called Spatio-Temporal Tree and Gauss Convolutional Network (ST-TGCN) for traffic flow forecasting. The model utilizes a tree structure to construct a planar tree matrix for extracting spatial features and employs gaussian temporal convolution to extract temporal features of traffic flow. Experimental results demonstrate that ST-TGCN outperforms baseline methods, indicating its superior predictive capabilities.
引用
收藏
页码:722 / 729
页数:8
相关论文
共 50 条
  • [1] Hierarchical Spatio-Temporal Graph Convolutional Networks and Transformer Network for Traffic Flow Forecasting
    Huo, Guangyu
    Zhang, Yong
    Wang, Boyue
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 3855 - 3867
  • [2] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [3] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238
  • [4] Dynamic Spatio-Temporal Residual Hypergraph Convolutional Networks for Traffic Flow Forecasting
    Su, Jun
    Wang, Hairu
    Przystupa, Krzysztof
    Kochan, Orest
    Liu, Donghua
    TRANSPORTATION RESEARCH RECORD, 2025,
  • [5] Traffic Flow Driven Spatio-Temporal Graph Convolutional Network for Ride-Hailing Demand Forecasting
    Fu, Hao
    Wang, Zhong
    Yu, Yang
    Meng, Xianwei
    Liu, Guiquan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 754 - 765
  • [6] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [7] Spatio-Temporal Heterogeneous Graph-Based Convolutional Networks for Traffic Flow Forecasting
    Ma, Zhaobin
    Lv, Zhiqiang
    Xin, Xiaoyang
    Cheng, Zesheng
    Xia, Fengqian
    Li, Jianbo
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (08) : 120 - 133
  • [8] Forecasting traffic speed using spatio-temporal hybrid dilated graph convolutional network
    Zhang, Lei
    Guo, Quansheng
    Li, Dong
    Pan, Jiaxing
    Wei, Chuyuan
    Lin, Jianxin
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-TRANSPORT, 2021, 177 (02) : 80 - 89
  • [9] DPSTCN: Dynamic Pattern-Aware Spatio-Temporal Convolutional Networks for Traffic Flow Forecasting
    Dou, Zeping
    Guo, Danhuai
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2025, 14 (01)
  • [10] Spatio-Temporal Hypergraph Neural ODE Network for Traffic Forecasting
    Yao, Chengzhi
    Li, Zhi
    Wang, Jumbo
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1499 - 1504