Cenozoic Indo-Pacific warm pool controlled by both atmospheric CO2 and paleogeography

被引:2
作者
Zhang, Ran [1 ,2 ]
Liu, Zhonghui [3 ]
Jiang, Dabang [1 ]
Yu, Yongqiang [1 ]
Zhang, Zhongshi [4 ]
Yang, Yibo [5 ]
Tan, Ning [6 ]
Si, Dong [1 ]
Zhang, Qiang [7 ]
Zhou, Xin [8 ]
机构
[1] Chinese Acad Sci, Inst Atmospher & Phys, Beijing 100029, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Nanjing 210044, Peoples R China
[3] Univ Hong Kong, Dept Earth Sci, Hong Kong 999077, Peoples R China
[4] China Univ Geosci, Sch Environm Studies, Dept Atmospher Sci, Wuhan 430074, Peoples R China
[5] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Sci Envir, Beijing 100101, Peoples R China
[6] Chinese Acad Sci, Key Lab Cenozo Geol & Environm, Inst Geol & Geophys, Beijing 100029, Peoples R China
[7] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing 100029, Peoples R China
[8] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Indo-Pacific warm pool; Cenozoic; Atmospheric CO 2; Paleogeography; SCALE CLIMATE FEATURES; INDONESIAN SEAWAY; PLIOCENE; MODEL; EVOLUTION; HISTORY; ARIDIFICATION; TEMPERATURE; CIRCULATION; SEDIMENTS;
D O I
10.1016/j.scib.2024.02.028
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Indo-Pacific warm pool (IPWP) is crucial for regional and global climates. However, the development of the IPWP and its effect on the regional climate during the Cenozoic remain unclear. Here, using a compilation of sea surface temperature (SST) records (mainly since the middle Miocene) and multimodel paleoclimate simulations, our results indicated that the extent, intensity and warmest temperature position of the IPWP changed markedly during the Cenozoic. Specifically, its extent decreased, its intensity weakened, and its warmest temperature position shifted from the Indian to western Pacific Ocean over time. The atmospheric CO2 2 dominated its extent and intensity, while paleogeography, by restricting the distribution of the Indian Ocean and the width of the tropical seaways, controlled the shift in its warmest temperature position. In particular, the eastward shift to the western Pacific Ocean from the middle to late Miocene inferred from compiled SST records likely resulted from the constriction of tropical seaways. Furthermore, by changing the atmospheric thermal structure and atmospheric circulation, the reduced extent and intensity of the IPWP decreased the annual precipitation in the western Indian Ocean, eastern Asia and Australia, while the shift in the warmest temperature position from the Indian to western Pacific Ocean promoted aridification in Australia. Qualitative model-data agreements are obtained for both the IPWP SST and regional climate. From the perspective of past warm climates with high concentrations of atmospheric CO2, 2 , the expansion and strengthening of the IPWP will occur in a warmer future and favor excessive precipitation in eastern Asia and Australia. (c) 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:1323 / 1331
页数:9
相关论文
共 60 条
[1]   Evolution of the Atlantic Intertropical Convergence Zone, and the South American and African Monsoons Over the Past 95-Myr and Their Impact on the Tropical Rainforests [J].
Acosta, R. Paul ;
Ladant, Jean-Baptiste ;
Zhu, Jiang ;
Poulsen, Christopher J. .
PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2022, 37 (07)
[2]   The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate [J].
Bentsen, M. ;
Bethke, I. ;
Debernard, J. B. ;
Iversen, T. ;
Kirkevag, A. ;
Seland, O. ;
Drange, H. ;
Roelandt, C. ;
Seierstad, I. A. ;
Hoose, C. ;
Kristjansson, J. E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) :687-720
[3]   Greatly Expanded Tropical Warm Pool and Weakened Hadley Circulation in the Early Pliocene [J].
Brierley, Chris M. ;
Fedorov, Alexey V. ;
Liu, Zhonghui ;
Herbert, Timothy D. ;
Lawrence, Kira T. ;
LaRiviere, Jonathan P. .
SCIENCE, 2009, 323 (5922) :1714-1718
[4]   Simulating Miocene Warmth: Insights From an Opportunistic Multi-Model Ensemble (MioMIP1) [J].
Burls, N. J. ;
Bradshaw, C. D. ;
De Boer, A. M. ;
Herold, N. ;
Huber, M. ;
Pound, M. ;
Donnadieu, Y. ;
Farnsworth, A. ;
Frigola, A. ;
Gasson, E. ;
von der Heydt, A. S. ;
Hutchinson, D. K. ;
Knorr, G. ;
Lawrence, K. T. ;
Lear, C. H. ;
Li, X. ;
Lohmann, G. ;
Lunt, D. J. ;
Marzocchi, A. ;
Prange, M. ;
Riihimaki, C. A. ;
Sarr, A-C ;
Siler, N. ;
Zhang, Z. .
PALEOCEANOGRAPHY AND PALEOCLIMATOLOGY, 2021, 36 (05)
[5]   Closing of the Indonesian seaway as a precursor to east African aridircation around 3-4 million years ago [J].
Cane, MA ;
Molnar, P .
NATURE, 2001, 411 (6834) :157-162
[6]   Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene [J].
Christensen, Beth A. ;
Renema, Willem ;
Henderiks, Jorijntje ;
De Vleeschouwer, David ;
Groeneveld, Jeroen ;
Castaneda, Isla S. ;
Reuning, Lars ;
Bogus, Kara ;
Auer, Gerald ;
Ishiwa, Takeshige ;
McHugh, Cecilia M. ;
Gallagher, Stephen J. ;
Fulthorpe, Craig S. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (13) :6914-6925
[7]   HOW OLD IS THE ISTHMUS OF PANAMA? [J].
Coates, Anthony G. ;
Stallard, Robert F. .
BULLETIN OF MARINE SCIENCE, 2013, 89 (04) :801-813
[8]   Tropical western Pacific warm pool and maritime continent precipitation rates and their contrasting relationships with the Walker Circulation [J].
Dayem, Katherine E. ;
Noone, David C. ;
Molnar, Peter .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D6)
[10]  
Dowsett H, 2010, STRATIGRAPHY, V7, P123