Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy

被引:7
作者
Villegas, Fernanda [1 ,2 ]
Dal Bello, Riccardo [3 ,4 ]
Alvarez-Andres, Emilie [5 ,6 ,7 ]
Dhont, Jennifer [8 ,9 ]
Janssen, Tomas [10 ]
Milan, Lisa [11 ]
Robert, Charlotte [12 ,13 ]
Salagean, Ghizela-Ana-Maria [14 ,15 ]
Tejedor, Natalia [16 ]
Trnkova, Petra [17 ]
Fusella, Marco [18 ]
Placidi, Lorenzo [19 ]
Cusumano, Davide [20 ]
机构
[1] Karolinska Inst, Dept Oncol Pathol, Solna, Sweden
[2] Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Radiotherapy Phys & Engn, Stockholm, Sweden
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] TUD Dresden Univ Technol, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Med Fac, Dresden, Germany
[6] TUD Dresden Univ Technol, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[7] TUD Dresden Univ Technol, Fac Med Carl Gustav Carus, Dresden, Germany
[8] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Inst Jules Bordet, Dept Med Phys, Brussels, Belgium
[9] Univ Libre Bruxelles ULB, Radiophys & MRI Phys Lab, Brussels, Belgium
[10] Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
[11] Ente Osped Cantonale, Med Phys Div, Imaging Inst Southern Switzerland IIMSI, Bellinzona, Switzerland
[12] Paris Saclay Univ, Mol Radiotherapy & Therapeut Innovat UMR 1030, ImmunoRadAI, Inst Gustave Roussy,Inserm, Villejuif, France
[13] Gustave Roussy, Dept Radiat Oncol, Villejuif, France
[14] Babes Bolyai Univ, Fac Phys, Cluj Napoca, Romania
[15] TopMed Med Ctr, Dept Radiat Oncol, Targu Mures, Romania
[16] Hosp Santa Creu i St Pau, Dept Med Phys & Radiat Protect, Barcelona, Spain
[17] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[18] Abano Terme Hosp, Dept Radiat Oncol, Abano Terme, Italy
[19] Fdn Policlin Univ Agostino Gemelli, Dept Diag Imaging Oncol Radiotherapy & Hematol, IRCCS, Rome, Italy
[20] Mater Olbia Hosp, Str Statale Orientale Sarda 125, Olbia, Sassari, Italy
关键词
MR-only radiotherapy; MR-only planning; Synthetic CT; Clinical implementation; Deep learning; Artificial intelligence; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING APPROACH; MR-LINAC SYSTEMS; CT GENERATION; GUIDED RADIOTHERAPY; ONLY PHOTON; IMAGES; HEAD; RECOMMENDATIONS; UNCERTAINTIES;
D O I
10.1016/j.radonc.2024.110387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi -modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
引用
收藏
页数:12
相关论文
共 50 条
[31]   A 3D and Explainable Artificial Intelligence Model for Evaluation of Chronic Otitis Media Based on Temporal Bone Computed Tomography: Model Development, Validation, and Clinical Application [J].
Chen, Binjun ;
Li, Yike ;
Sun, Yu ;
Sun, Haojie ;
Wang, Yanmei ;
Lyu, Jihan ;
Guo, Jiajie ;
Bao, Shunxing ;
Cheng, Yushu ;
Niu, Xun ;
Yang, Lian ;
Xu, Jianghong ;
Yang, Juanmei ;
Huang, Yibo ;
Chi, Fanglu ;
Liang, Bo ;
Ren, Dongdong .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
[32]   Development of artificial intelligence-based clinical decision support system for diagnosis of meniscal injury using magnetic resonance images [J].
Chou, Yi-Ting ;
Lin, Ching-Ting ;
Chang, Ting-An ;
Wu, Ya-Lun ;
Yu, Cheng-En ;
Ho, Tsung-Yu ;
Chen, Hui-Yi ;
Hsu, Kai-Cheng ;
Lee, Oscar Kuang-Sheng .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
[33]   Efficient and Accurate Computed Tomography-Based Stone Volume Determination: Development of an Automated Artificial Intelligence Algorithm [J].
Cumpanas, Andrei D. ;
Chantaduly, Chanon ;
Morgan, Kalon L. ;
Shao, Wei ;
Gorgen, Antonio R. H. ;
Tran, Candices Minh ;
Wu, Yi Xi ;
Mccormac, Amanda ;
Tano, Zachary E. ;
Patel, Roshan M. ;
Chang, Peter ;
Landman, Jaime ;
Clayman, Ralph V. .
JOURNAL OF UROLOGY, 2024, 211 (02) :256-265
[34]   Development and evaluation of a deep learning based artificial intelligence for automatic identification of gold fiducial markers in an MRI-only prostate radiotherapy workflow [J].
Gustafsson, Christian Jamtheim ;
Sward, Johan ;
Adalbjornsson, Stefan Ingi ;
Jakobsson, Andreas ;
Olsson, Lars E. .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (22)
[35]   Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy [J].
Li, Wen ;
Li, Yafen ;
Qin, Wenjian ;
Liang, Xiaokun ;
Xu, Jianyang ;
Xiong, Jing ;
Xie, Yaoqin .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) :1223-1236
[36]   An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works [J].
Sadeghi, Delaram ;
Shoeibi, Afshin ;
Ghassemi, Navid ;
Moridian, Parisa ;
Khadem, Ali ;
Alizadehsani, Roohallah ;
Teshnehlab, Mohammad ;
Gorriz, Juan M. ;
Khozeimeh, Fahime ;
Zhang, Yu-Dong ;
Nahavandi, Saeid ;
Acharya, U. Rajendra .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[37]   Artificial Intelligence-Based Prediction of Contrast Medium Doses for Computed Tomography Angiography Using Optimized Clinical Parameter Sets [J].
Fleitmann, Marja ;
Uzunova, Hristina ;
Pallenberg, Rene ;
Stroth, Andreas M. ;
Gerlach, Jan ;
Fuerschke, Alexander ;
Barkhausen, Joerg ;
Bischof, Arpad ;
Handels, Heinz .
METHODS OF INFORMATION IN MEDICINE, 2024, 63 (01/02) :11-20
[38]   Improving Automated Glioma Segmentation in Routine Clinical Use Through Artificial Intelligence-Based Replacement of Missing Sequences With Synthetic Magnetic Resonance Imaging Scans [J].
Thomas, Marie Franziska ;
Kofler, Florian ;
Grundl, Lioba ;
Finck, Tom ;
Li, Hongwei ;
Zimmer, Claus ;
Menze, Bjorn ;
Wiestler, Benedikt .
INVESTIGATIVE RADIOLOGY, 2022, 57 (03) :187-193
[39]   Dosimetric evaluation of synthetic CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate radiotherapy [J].
Kim, Joshua ;
Garbarino, Kim ;
Schultz, Lonni ;
Levin, Kenneth ;
Movsas, Benjamin ;
Siddiqui, M. Salim ;
Chetty, Indrin J. ;
Glide-Hurst, Carri .
RADIATION ONCOLOGY, 2015, 10
[40]   Dosimetric evaluation of synthetic CT relative to bulk density assignment-based magnetic resonance-only approaches for prostate radiotherapy [J].
Joshua Kim ;
Kim Garbarino ;
Lonni Schultz ;
Kenneth Levin ;
Benjamin Movsas ;
M. Salim Siddiqui ;
Indrin J. Chetty ;
Carri Glide-Hurst .
Radiation Oncology, 10