Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy

被引:7
作者
Villegas, Fernanda [1 ,2 ]
Dal Bello, Riccardo [3 ,4 ]
Alvarez-Andres, Emilie [5 ,6 ,7 ]
Dhont, Jennifer [8 ,9 ]
Janssen, Tomas [10 ]
Milan, Lisa [11 ]
Robert, Charlotte [12 ,13 ]
Salagean, Ghizela-Ana-Maria [14 ,15 ]
Tejedor, Natalia [16 ]
Trnkova, Petra [17 ]
Fusella, Marco [18 ]
Placidi, Lorenzo [19 ]
Cusumano, Davide [20 ]
机构
[1] Karolinska Inst, Dept Oncol Pathol, Solna, Sweden
[2] Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Radiotherapy Phys & Engn, Stockholm, Sweden
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] TUD Dresden Univ Technol, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Med Fac, Dresden, Germany
[6] TUD Dresden Univ Technol, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[7] TUD Dresden Univ Technol, Fac Med Carl Gustav Carus, Dresden, Germany
[8] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Inst Jules Bordet, Dept Med Phys, Brussels, Belgium
[9] Univ Libre Bruxelles ULB, Radiophys & MRI Phys Lab, Brussels, Belgium
[10] Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
[11] Ente Osped Cantonale, Med Phys Div, Imaging Inst Southern Switzerland IIMSI, Bellinzona, Switzerland
[12] Paris Saclay Univ, Mol Radiotherapy & Therapeut Innovat UMR 1030, ImmunoRadAI, Inst Gustave Roussy,Inserm, Villejuif, France
[13] Gustave Roussy, Dept Radiat Oncol, Villejuif, France
[14] Babes Bolyai Univ, Fac Phys, Cluj Napoca, Romania
[15] TopMed Med Ctr, Dept Radiat Oncol, Targu Mures, Romania
[16] Hosp Santa Creu i St Pau, Dept Med Phys & Radiat Protect, Barcelona, Spain
[17] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[18] Abano Terme Hosp, Dept Radiat Oncol, Abano Terme, Italy
[19] Fdn Policlin Univ Agostino Gemelli, Dept Diag Imaging Oncol Radiotherapy & Hematol, IRCCS, Rome, Italy
[20] Mater Olbia Hosp, Str Statale Orientale Sarda 125, Olbia, Sassari, Italy
关键词
MR-only radiotherapy; MR-only planning; Synthetic CT; Clinical implementation; Deep learning; Artificial intelligence; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING APPROACH; MR-LINAC SYSTEMS; CT GENERATION; GUIDED RADIOTHERAPY; ONLY PHOTON; IMAGES; HEAD; RECOMMENDATIONS; UNCERTAINTIES;
D O I
10.1016/j.radonc.2024.110387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi -modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning
    Peng, Yinglin
    Chen, Shupeng
    Qin, An
    Chen, Meining
    Gao, Xingwang
    Liu, Yimei
    Miao, Jingjing
    Gu, Huikuan
    Zhao, Chong
    Deng, Xiaowu
    Qi, Zhenyu
    RADIOTHERAPY AND ONCOLOGY, 2020, 150 : 211 - 218
  • [22] Feasibility of synthetic computed tomography generated with an adversarial network for multi-sequence magnetic resonance-based brain radiotherapy
    Koike, Yuhei
    Akino, Yuichi
    Sumida, Iori
    Shiomi, Hiroya
    Mizuno, Hirokazu
    Yagi, Masashi
    Isohashi, Fumiaki
    Seo, Yuji
    Suzuki, Osamu
    Ogawa, Kazuhiko
    JOURNAL OF RADIATION RESEARCH, 2020, 61 (01) : 92 - 103
  • [23] Magnetic Resonance-Based Synthetic Computed Tomography Using Generative Adversarial Networks for Intracranial Tumor Radiotherapy Treatment Planning
    Wang, Chun-Chieh
    Wu, Pei-Huan
    Lin, Gigin
    Huang, Yen-Ling
    Lin, Yu-Chun
    Chang, Yi-Peng
    Weng, Jun-Cheng
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [24] Evaluation of a deep learning magnetic resonance imaging reconstruction method for synthetic computed tomography generation in prostate radiotherapy
    Olsson, Lars E.
    af Wetterstedt, Sacha
    Scherman, Jonas
    Gunnlaugsson, Adalsteinn
    Persson, Emilia
    Gustafsson, Christian Jamtheim
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 29
  • [25] Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain
    Edmund, Jens M.
    Andreasen, Daniel
    Mahmood, Faisal
    Van Leemput, Koen
    ACTA ONCOLOGICA, 2015, 54 (09) : 1496 - 1500
  • [26] Cone beam computed tomography based image guidance and quality assessment of prostate cancer for magnetic resonance imaging-only radiotherapy in the pelvis
    Edmund, Jens M.
    Andreasen, Daniel
    Van Leemput, Koen
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 18 : 55 - 60
  • [27] Clinical Implementation of an Artificial Intelligence Algorithm for Magnetic Resonance-Derived Measurement of Total Kidney Volume
    Potretzke, Theodora A.
    Korfiatis, Panagiotis
    Blezek, Daniel J.
    Edwards, Marie E.
    Klug, Jason R.
    Cook, Cole J.
    V. Gregory, Adriana
    Harris, Peter C.
    Chebib, Fouad T.
    Hogan, Marie C.
    Torres, Vicente E.
    Bolan, Candice W.
    Sandrasegaran, Kumaresan
    Kawashima, Akira
    Collins, Jeremy D.
    Takahashi, Naoki
    Hartman, Robert P.
    Williamson, Eric E.
    King, Bernard F.
    Callstrom, Matthew R.
    Erickson, Bradley J.
    Kline, Timothy L.
    MAYO CLINIC PROCEEDINGS, 2023, 98 (05) : 689 - 700
  • [28] Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging
    Zheng, Shuang
    He, Kan
    Zhang, Lei
    Li, Mingyang
    Zhang, Huimao
    Gao, Pujun
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 165
  • [29] A systematic review of the role of artificial intelligence in automating computed tomography-based adaptive radiotherapy for head and neck cancer
    Mastella, Edoardo
    Calderoni, Francesca
    Manco, Luigi
    Ferioli, Martina
    Medoro, Serena
    Turra, Alessandro
    Giganti, Melchiore
    Stefanelli, Antonio
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2025, 33
  • [30] Artificial intelligence for left ventricular hypertrophy detection and differentiation on echocardiography, cardiac magnetic resonance and cardiac computed tomography: A systematic review
    Cirillo, Chiara
    Matarrese, Margherita A. G.
    Monda, Emanuele
    Pagnano, Maria Elisabetta
    Vitale, Jacopo
    Verrillo, Federica
    Palmiero, Giuseppe
    Bassolino, Sabrina
    Buono, Pietro
    Caiazza, Martina
    Loffredo, Francesco
    Pecchia, Leandro
    Limongelli, Giuseppe
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2025, 422