Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy

被引:7
|
作者
Villegas, Fernanda [1 ,2 ]
Dal Bello, Riccardo [3 ,4 ]
Alvarez-Andres, Emilie [5 ,6 ,7 ]
Dhont, Jennifer [8 ,9 ]
Janssen, Tomas [10 ]
Milan, Lisa [11 ]
Robert, Charlotte [12 ,13 ]
Salagean, Ghizela-Ana-Maria [14 ,15 ]
Tejedor, Natalia [16 ]
Trnkova, Petra [17 ]
Fusella, Marco [18 ]
Placidi, Lorenzo [19 ]
Cusumano, Davide [20 ]
机构
[1] Karolinska Inst, Dept Oncol Pathol, Solna, Sweden
[2] Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Radiotherapy Phys & Engn, Stockholm, Sweden
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] TUD Dresden Univ Technol, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Med Fac, Dresden, Germany
[6] TUD Dresden Univ Technol, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[7] TUD Dresden Univ Technol, Fac Med Carl Gustav Carus, Dresden, Germany
[8] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Inst Jules Bordet, Dept Med Phys, Brussels, Belgium
[9] Univ Libre Bruxelles ULB, Radiophys & MRI Phys Lab, Brussels, Belgium
[10] Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
[11] Ente Osped Cantonale, Med Phys Div, Imaging Inst Southern Switzerland IIMSI, Bellinzona, Switzerland
[12] Paris Saclay Univ, Mol Radiotherapy & Therapeut Innovat UMR 1030, ImmunoRadAI, Inst Gustave Roussy,Inserm, Villejuif, France
[13] Gustave Roussy, Dept Radiat Oncol, Villejuif, France
[14] Babes Bolyai Univ, Fac Phys, Cluj Napoca, Romania
[15] TopMed Med Ctr, Dept Radiat Oncol, Targu Mures, Romania
[16] Hosp Santa Creu i St Pau, Dept Med Phys & Radiat Protect, Barcelona, Spain
[17] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[18] Abano Terme Hosp, Dept Radiat Oncol, Abano Terme, Italy
[19] Fdn Policlin Univ Agostino Gemelli, Dept Diag Imaging Oncol Radiotherapy & Hematol, IRCCS, Rome, Italy
[20] Mater Olbia Hosp, Str Statale Orientale Sarda 125, Olbia, Sassari, Italy
关键词
MR-only radiotherapy; MR-only planning; Synthetic CT; Clinical implementation; Deep learning; Artificial intelligence; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING APPROACH; MR-LINAC SYSTEMS; CT GENERATION; GUIDED RADIOTHERAPY; ONLY PHOTON; IMAGES; HEAD; RECOMMENDATIONS; UNCERTAINTIES;
D O I
10.1016/j.radonc.2024.110387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi -modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps
    Fusella, M.
    Andres, E. Alvarez
    Villegas, F.
    Milan, L.
    Janssen, T. M.
    Dal Bello, R.
    Garibaldi, C.
    Placidi, L.
    Cusumano, D.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 32
  • [2] Synthetic computed tomography generation for abdominal adaptive radiotherapy using low-field magnetic resonance imaging
    Hernandez, Armando Garcia
    Fau, Pierre
    Wojak, Julien
    Mailleux, Hugues
    Benkreira, Mohamed
    Rapacchi, Stanislas
    Adel, Mouloud
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 25
  • [3] Comprehensive dose evaluation of a Deep Learning based synthetic Computed Tomography algorithm for pelvic Magnetic Resonance-only radiotherapy
    Wyatt, Jonathan J.
    Kaushik, Sandeep
    Cozzini, Cristina
    Pearson, Rachel A.
    Petit, Steven
    Capala, Marta
    Hernandez-Tamames, Juan A.
    Hideghety, Katalin
    Maxwell, Ross J.
    Wiesinger, Florian
    McCallum, Hazel M.
    RADIOTHERAPY AND ONCOLOGY, 2023, 184
  • [4] Synthetic computed tomography based dose calculation in prostate cancer patients with hip prostheses for magnetic resonance imaging-only radiotherapy
    Koivula, Lauri
    Seppala, Tiina
    Collan, Juhani
    Visapaa, Harri
    Tenhunen, Mikko
    Korhonen, Arthur
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 27
  • [5] Synthetic computed tomography for low-field magnetic resonance-guided radiotherapy in the abdomen
    Lapaeva, Mariia
    Saint-Esteven, Agustina La Greca
    Wallimann, Philipp
    Guenther, Manuel
    Konukoglu, Ender
    Andratschke, Nicolaus
    Guckenberger, Matthias
    Tanadini-Lang, Stephanie
    Dal Bello, Riccardo
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 24 : 173 - 179
  • [6] Feasibility of artificial-intelligence-based synthetic computed tomography in a magnetic resonance-only radiotherapy workflow for brain radiotherapy: Two-way dose validation and 2D/2D kV-image-based positioning
    Masitho, Siti
    Szkitsak, Juliane
    Grigo, Johanna
    Fietkau, Rainer
    Putz, Florian
    Bert, Christoph
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 24 : 111 - 117
  • [7] Feasibility of magnetic resonance imaging-only rectum radiotherapy with a commercial synthetic computed tomography generation solution
    Maspero, Matteo
    Tyyger, Marcus D.
    Tijssen, Rob H. N.
    Seevinck, Peter R.
    Intven, Martijn P. W.
    van den Berg, Cornelis A. T.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2018, 7 : 58 - 64
  • [8] Artificial intelligence-based bone-enhanced magnetic resonance image-a computed tomography/magnetic resonance image composite image modality in nasopharyngeal carcinoma radiotherapy
    Song, Liming
    Li, Yafen
    Dong, Guoya
    Lambo, Ricardo
    Qin, Wenjian
    Wang, Yuenan
    Zhang, Guangwei
    Liu, Jing
    Xie, Yaoqin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (12) : 4709 - 4720
  • [9] Comparison of Computed Tomography-Based Artificial Intelligence Modeling and Magnetic Resonance Imaging in Diagnosis of Cholesteatoma
    Eroglu, Orkun
    Eroglu, Yesim
    Yildirim, Muhammed
    Karlidag, Turgut
    Cinar, Ahmet
    Akyigit, Abdulvahap
    Kaygusuz, Irfan
    Yildirim, Hanefi
    Keles, Erol
    Yalcin, Sinasi
    JOURNAL OF INTERNATIONAL ADVANCED OTOLOGY, 2023, 19 (04) : 342 - 349
  • [10] Synthetic computed tomography data allows for accurate absorbed dose calculations in a magnetic resonance imaging only workflow for head and neck radiotherapy
    Palmer, Emilia
    Karlsson, Anna
    Nordstrom, Fredrik
    Petruson, Karin
    Siversson, Carl
    Ljungberg, Maria
    Sohlin, Maja
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 17 : 36 - 42