Transcriptional elongation control of hypoxic response

被引:5
作者
Soliman, Shimaa Hassan AbdelAziz [1 ]
Iwanaszko, Marta [1 ]
Zheng, Bin [1 ]
Gold, Sarah [1 ]
Howard, Benjamin Charles [1 ]
Das, Madhurima [1 ]
Chakrabarty, Ram Prosad [1 ,2 ]
Chandel, Navdeep S. [1 ,2 ]
Shilatifard, Ali [1 ]
机构
[1] Northwestern Univ, Simpson Querrey Inst Epigenet, Feinberg Sch Med, Dept Biochem & Mol Genet, Chicago, IL 60611 USA
[2] Northwestern Univ, Dept Med, Div Pulm & Crit Care, Chicago, IL 60611 USA
关键词
transcription; gene expression; epigenetic mechanisms; chromatin; RNA polymerase II; RNA-POLYMERASE-II; BROMODOMAIN PROTEIN BRD4; INDUCIBLE FACTOR-I; SEQ DATA; P-TEFB; OXYGEN; COMPLEX; BINDING; HIF-1-ALPHA; RESISTANCE;
D O I
10.1073/pnas.2321502121
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The release of paused RNA polymerase II (RNAPII) from promoter- proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation tor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C - terminal domain by its cyclin- dependent kinase component, CDK9. However, the nal and stress- specific roles of the various RNAPII- associated macromolecular complexes containing PTEF- b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) dispensable for the release of paused RNAPII at hypoxia- activated genes and that inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, demonstrate that the C - terminal region of BRD4 is required for Polymerase- Associated Factor - 1 Complex (PAF1C) recruitment to establish an elongation- competent RNAPII complex at hypoxia- responsive genes. PAF1C disruption using a small- molecule inhibitor (iPAF1C) impairs hypoxia- induced, BRD4- mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia- responsive transcriptional elongation.
引用
收藏
页数:12
相关论文
共 50 条
[21]   Regulation of transcription elongation in response to osmostress [J].
Silva, Andrea ;
Cavero, Santiago ;
Sarah, Victoria ;
Sole, Carme ;
Bottcher, Rene ;
Chavez, Sebastian ;
Posas, Francesc ;
de Nadal, Eulelia .
PLOS GENETICS, 2017, 13 (11)
[22]   Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs [J].
Gorospe, Myriam ;
Tominaga, Kumiko ;
Wu, Xue ;
Faehling, Michael ;
Ivan, Mircea .
FRONTIERS IN MOLECULAR NEUROSCIENCE, 2011, 4
[23]   The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation [J].
Chen, Shuzhen ;
Ma, Jian ;
Wu, Feizhen ;
Xiong, Li-jun ;
Ma, Honghui ;
Xu, Wenqi ;
Lv, Ruitu ;
Li, Xiaodong ;
Villen, Judit ;
Gygi, Steven P. ;
Liu, Xiaole Shirley ;
Shi, Yang .
GENES & DEVELOPMENT, 2012, 26 (12) :1364-1375
[24]   Control of Drosophila embryo patterning by transcriptional co-regulators [J].
Mannervik, Mattias .
EXPERIMENTAL CELL RESEARCH, 2014, 321 (01) :47-57
[25]   Ixr1p and the control of the Saccharomyces cerevisiae hypoxic response [J].
Vizoso-Vazquez, Angel ;
Lamas-Maceiras, Monica ;
Becerra, Manuel ;
Isabel Gonzalez-Siso, M. ;
Rodriguez-Belmonte, Esther ;
Esperanza Cerdan, M. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 94 (01) :173-184
[26]   Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis [J].
Liang, Kaiwei ;
Woodfin, Ashley R. ;
Slaughter, Brian D. ;
Unruh, Jay R. ;
Box, Andrew C. ;
Rickels, Ryan A. ;
Gao, Xin ;
Haug, Jeffrey S. ;
Jaspersen, Sue L. ;
Shilatifard, Ali .
MOLECULAR CELL, 2015, 60 (03) :435-445
[27]   From silence to symphony: transcriptional repression and recovery in response to DNA damage [J].
Ajit, Kamal ;
Gullerova, Monika .
TRANSCRIPTION-AUSTIN, 2024, :161-175
[28]   Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease [J].
Sharma, Nimisha .
IUBMB LIFE, 2016, 68 (09) :709-716
[29]   The transcriptional elongation rate regulates alternative polyadenylation in yeast [J].
Geisberg, Joseph, V ;
Moqtaderi, Zarmik ;
Struhl, Kevin .
ELIFE, 2020, 9
[30]   TRIM28 as a novel transcriptional elongation factor [J].
Bunch, Heeyoun ;
Calderwood, Stuart K. .
BMC MOLECULAR BIOLOGY, 2015, 16