Another hybrid conjugate gradient method as a convex combination of WYL and CD methods

被引:1
作者
Guefassa, Imane [1 ]
Chaib, Yacine [1 ]
Bechouat, Tahar [1 ]
机构
[1] Mohamed Cherif Messaadia Univ, Lab Informat & Math LIM, Souk Ahras 41000, Algeria
来源
MONTE CARLO METHODS AND APPLICATIONS | 2024年 / 30卷 / 03期
关键词
Hybrid conjugate gradient method; line search; sufficient descent condition; global convergence; numerical comparisons; mode function; kernel estimator; CONVERGENCE PROPERTIES; ALGORITHM; MODE;
D O I
10.1515/mcma-2024-2007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Conjugate gradient (CG) methods are a popular class of iterative methods for solving linear systems of equations and nonlinear optimization problems. In this paper, a new hybrid conjugate gradient (CG) method is presented and analyzed for solving unconstrained optimization problems, where the parameter beta k \beta_{k} is a convex combination of beta k WYL \beta_{k}<^>{\mathrm{WYL}} and beta k CD \beta_{k}<^>{\mathrm{CD}} . Under the strong Wolfe line search, the new method possesses the sufficient descent condition and the global convergence properties. The preliminary numerical results show the efficiency of our method in comparison with other CG methods. Furthermore, the proposed algorithm HWYLCD was extended to solve the problem of a mode function.
引用
收藏
页码:225 / 234
页数:10
相关论文
共 29 条
  • [1] Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization
    Andrei, N.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 249 - 264
  • [2] Andrei N., 2008, ADV MODEL OPTIM, V10, P147, DOI DOI 10.1002/ADEM.200890003
  • [3] Another hybrid conjugate gradient algorithm for unconstrained optimization
    Andrei, Neculai
    [J]. NUMERICAL ALGORITHMS, 2008, 47 (02) : 143 - 156
  • [4] CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT
    BONGARTZ, I
    CONN, AR
    GOULD, N
    TOINT, PL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01): : 123 - 160
  • [5] Convergence properties of nonlinear conjugate gradient methods
    Dai, YH
    Han, JY
    Liu, GH
    Sun, DF
    Yin, HX
    Yuan, YX
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (02) : 345 - 358
  • [6] An efficient hybrid conjugate gradient method for unconstrained optimization
    Dai, YH
    Yuan, Y
    [J]. ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) : 33 - 47
  • [7] A nonlinear conjugate gradient method with a strong global convergence property
    Dai, YH
    Yuan, Y
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 177 - 182
  • [8] New Hybrid Conjugate Gradient Method as a Convex Combination of LS and CD methods
    Djordjevic, Snezana S.
    [J]. FILOMAT, 2017, 31 (06) : 1813 - 1825
  • [9] New Hybrid Conjugate Gradient Method as a Convex Combination of FR and PRP Methods
    Djordjevic, Snezana S.
    [J]. FILOMAT, 2016, 30 (11) : 3083 - 3100
  • [10] Benchmarking optimization software with performance profiles
    Dolan, ED
    Moré, JJ
    [J]. MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 201 - 213