Analyzing winter-wheat biochemical traits using hyperspectral remote sensing and deep learning

被引:6
|
作者
Yue, Jibo [1 ,3 ]
Yang, Guijun [2 ,3 ]
Li, Changchun [3 ]
Liu, Yang [2 ]
Wang, Jian [1 ]
Guo, Wei [1 ]
Ma, Xinming [1 ]
Niu, Qinglin [3 ]
Qiao, Hongbo [1 ]
Feng, Haikuan [2 ,4 ]
机构
[1] Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
[3] Henan Polytech Univ, Inst Quantitat Remote Sensing & Smart Agr, Jiaozuo 454000, Peoples R China
[4] Nanjing Agr Univ, Coll Agr, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; Transfer learning; Deep learning; Hyperspectral; LEAF-AREA INDEX; SPECTRAL REFLECTANCE; VEGETATION INDEXES; LAI; MODEL;
D O I
10.1016/j.compag.2024.109026
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Accurate estimation of crop leaf and canopy biochemical traits, such as leaf dry matter content (Cm), leaf equivalent water thickness (Cw), leaf area index (LAI), dry leaf biomass (DLB), leaf total water content (LW), and fresh leaf biomass (FLB), is essential for monitoring crop growth accurately. The vegetation spectral feature technique combined with statistical regression methods is widely employed for remote sensing crop biochemical traits mapping. However, the crop canopy spectral reflectance is influenced by various crop biochemical traits and uncertainties in geometric changes of light and soil background effects. Consequently, the remote-sensing estimation of crop biochemical traits is limited. A potential solution involves training a deep learning model to understand the physical relationship between crop biochemical traits and canopy spectral reflectance based on a physical radiative transfer model (RTM). The primary focus of this study is to propose a winter-wheat leaf and canopy biochemical traits analysis and mapping method based on hyperspectral remote sensing, utilizing a deep learning network for leaf area index and leaf biochemical traits deep learning network (LabTNet). This study consists of four main tasks: (1) Field-based measurements of winter-wheat spectra and biochemical traits were conducted in two growing seasons. A PROSAIL RTM was also employed to generate a simulated dataset representing comprehensive and complex winter-wheat field conditions. (2) The LabTNet deep learning model was pre-trained using the simulated spectra dataset to acquire knowledge of the physical relationship between crop biochemical traits and canopy spectral reflectance derived from the RTM. Subsequently, the model was retrained using the field-based spectra dataset from two growing seasons, employing a transfer learning technique. (3) An analysis was conducted to assess the performance of LabTNet against traditional statistical regression methods in estimating crop leaf and canopy biochemical traits. The study used the gradient-weighted class activation mapping (Grad-CAM) technique to analyze the attention regions of input spectra (454:8:950 nm, 960:10:1300 nm, 1450:10:1750 nm, 2000:10:2350 nm) by different convolutional neural network layers in LabTNet, aiming to enhance the interpretability of deep learning models. (4) Winter-wheat leaf and canopy biochemical traits (Cw, Cm, LAI, DLB, LW, and FLB) were mapped using the LabTNet deep learning model. Our research has the following conclusions: (1) Combining the RTM and deep learning techniques yields higher winter-wheat biochemical trait estimates than traditional statistical regression methods. (2) Different LabTNet deep learning model layers focus on distinct areas of canopy reflectance, corresponding to the sensitive regions for various winter-wheat biochemical traits. (3) LabTNet demonstrates similar winter-wheat leaf and canopy biochemical traits estimation performance using visible and near-infrared (VNIR) reflectance data and fullspectral (FS) range hyperspectral reflectance as inputs (Cw: R2 = 0.603-0.653, RMSE = 0.0015-0.0015 cm; Cm: R2 = 0.511-0.560, RMSE = 0.0006-0.0007 g/m2; LAI: R2 = 0.773-0.793, RMSE = 0.65-0.66 m2/m2; LW: R2 = 0.842-0.847, RMSE = 67.93-70.73 g/m2; DLB: R2 = 0.747-0.762, RMSE = 21.10-21.89 g/m2; FLB: R2 = 0.831 -0.840, RMSE = 86.26 -90.30 g/m 2 ). The combined use of UAV hyperspectral remote sensing and the LabTNet model proves effective in providing high-performance winter-wheat leaf and canopy biochemical trait maps, offering valuable insights for agricultural management.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements
    Zhou, Xianfeng
    Huang, Wenjiang
    Kong, Weiping
    Ye, Huichun
    Luo, Juhua
    Chen, Pengfei
    ADVANCES IN SPACE RESEARCH, 2016, 58 (09) : 1627 - 1637
  • [32] Oil Film Classification Using Deep Learning-Based Hyperspectral Remote Sensing Technology
    Zhu, Xueyuan
    Li, Ying
    Zhang, Qiang
    Liu, Bingxin
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (04)
  • [33] Wheat yield estimation using remote sensing data based on machine learning approaches
    Cheng, Enhui
    Zhang, Bing
    Peng, Dailiang
    Zhong, Liheng
    Yu, Le
    Liu, Yao
    Xiao, Chenchao
    Li, Cunjun
    Li, Xiaoyi
    Chen, Yue
    Ye, Huichun
    Wang, Hongye
    Yu, Ruyi
    Hu, Jinkang
    Yang, Songlin
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [34] Coupling Hyperspectral Remote Sensing Data with a Crop Model to Study Winter Wheat Water Demand
    Zhang, Chao
    Liu, Jiangui
    Dong, Taifeng
    Pattey, Elizabeth
    Shang, Jiali
    Tang, Min
    Cai, Huanjie
    Saddique, Qaisar
    REMOTE SENSING, 2019, 11 (14)
  • [35] Estimation of wheat tiller density using remote sensing data and machine learning methods
    Hu, Jinkang
    Zhang, Bing
    Peng, Dailiang
    Yu, Ruyi
    Liu, Yao
    Xiao, Chenchao
    Li, Cunjun
    Dong, Tao
    Fang, Moren
    Ye, Huichun
    Huang, Wenjiang
    Lin, Binbin
    Wang, Mengmeng
    Cheng, Enhui
    Yang, Songlin
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [36] Winter oilseed rape and winter wheat growth prediction using remote sensing methods
    Dominguez, J. A.
    Kumhalova, J.
    Novak, P.
    PLANT SOIL AND ENVIRONMENT, 2015, 61 (09) : 410 - 416
  • [37] Compressed Remote Sensing by Using Deep Learning
    Mirrashid, Alireza
    Beheshti, Ali Asghar
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 549 - 552
  • [38] Deep Learning for Fusion of APEX Hyperspectral and Full-Waveform LiDAR Remote Sensing Data for Tree Species Mapping
    Liao, Wenzhi
    Van Coillie, Frieke
    Gao, Lianru
    Li, Liwei
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE ACCESS, 2018, 6 : 68716 - 68729
  • [39] Deep Learning for Remote Sensing Applications
    Lee, Moung-Jin
    Lee, Won-Jin
    Lee, Seung-Kuk
    Jung, Hyung-Sup
    KOREAN JOURNAL OF REMOTE SENSING, 2022, 38 (06) : 1581 - 1587
  • [40] Estimation of Leaf Physical and Chemical Parameters Based on Hyperspectral Remote Sensing and Deep Learning Technologies
    Yue, Ji-bo
    Leng, Meng-die
    Tian, Qing-jiu
    Guo, Wei
    Liu, Yang
    Feng, Haikuan
    Qiao, Hong-bo
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44 (10) : 2873 - 2883