共 2 条
Occupied Outer Cationic Orbitals in Dimeric MX2-Type BaSe2 Compound Lead to Reduced Thermal Conductivity and High Thermoelectric Performance
被引:2
|作者:
Zhang, Jie
[1
]
Zhou, Li
[1
]
Xia, Xiaohong
[1
]
Gao, Yun
[1
]
Huang, Zhongbing
[2
]
机构:
[1] Hubei Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Green Preparat & Applicat Funct Mat, Wuhan 430062, Peoples R China
[2] Hubei Univ, Sch Phys, Wuhan 430062, Peoples R China
关键词:
anisotropic electrical and thermal transport;
density functional theory;
dimeric MX2-type compounds;
energy materials;
ionic compound BaSe2 and BaAs;
simulation;
thermoelectrics;
SCATTERING;
BOUNDARIES;
EFFICIENCY;
DESIGN;
MG3SB2;
FIGURE;
MERIT;
HEAT;
D O I:
10.1002/eem2.12799
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Decoupling electrical and thermal properties to enhance the figure of merit of thermoelectric materials underscores an in-depth understanding of the mechanisms that govern the transfer of charge carriers. Typically, a factor that contributes to the optimization of thermal conductivity is often found to be detrimental to the electrical transport properties. Here, we systematically investigated 26 dimeric MX2-type compounds (where M represents a metal and X represents a nonmetal element) to explore the influence of the electronic configurations of metal cations on lattice thermal transport and thermoelectric performance using first-principles calculations. A principled scheme has been identified that the filled outer orbitals of the cation lead to a significantly lower lattice thermal conductivity compared to that of the partly occupied case for MX2, due to the much weakened bonds manifested by the shallow potential well, smaller interatomic force constants, and higher atomic displacement parameters. Based on these findings, we propose two ionic compounds, BaAs and BaSe2, to realize reasonable high electrical conductivities through the structural anisotropy caused by the inserted covalent X-2 dimers while still maintaining the large lattice anharmonicity. The combined superior electrical and thermal properties of BaSe2 lead to a high n-type thermoelectric ZT value of 2.3 at 500 K. This work clarifies the structural origin of the heat transport properties of dimeric MX2-type compounds and provides an insightful strategy for developing promising thermoelectric materials.
引用
收藏
页数:12
相关论文