Dynamic stochastic projection method for multistage stochastic variational inequalities

被引:1
作者
Zhou, Bin [1 ]
Jiang, Jie [2 ]
Sun, Hailin [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Jiangsu Int Joint Lab BDMCA,Minist Educ, Nanjing 210023, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Multistage stochastic variational inequalities; Stochastic approximation method; Inexact stochastic projection method; Dynamic stochastic projection method; Convergence rate; APPROXIMATION METHODS; UNCERTAINTY; SCHEMES; GAMES;
D O I
10.1007/s10589-024-00594-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Stochastic approximation (SA) type methods have been well studied for solving single-stage stochastic variational inequalities (SVIs). This paper proposes a dynamic stochastic projection method (DSPM) for solving multistage SVIs. In particular, we investigate an inexact single-stage SVI and present an inexact stochastic projection method (ISPM) for solving it. Then we give the DSPM to a three-stage SVI by applying the ISPM to each stage. We show that the DSPM can achieve an O(1 & varepsilon;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\frac{1}{\epsilon <^>2})$$\end{document} convergence rate regarding to the total number of required scenarios for the three-stage SVI. We also extend the DSPM to the multistage SVI when the number of stages is larger than three. The numerical experiments illustrate the effectiveness and efficiency of the DSPM.
引用
收藏
页码:485 / 516
页数:32
相关论文
共 41 条
[21]   Convergence analysis of sample average approximation for a class of stochastic nonlinear complementarity problems: from two-stage to multistage [J].
Jiang, Jie ;
Sun, Hailin ;
Zhou, Bin .
NUMERICAL ALGORITHMS, 2022, 89 (01) :167-194
[22]   On complexity of multistage stochastic programs under heavy tailed distributions [J].
Jiang, Jie ;
Li, Shengjie .
OPERATIONS RESEARCH LETTERS, 2021, 49 (02) :265-269
[23]   Quantitative analysis for a class of two-stage stochastic linear variational inequality problems [J].
Jiang, Jie ;
Chen, Xiaojun ;
Chen, Zhiping .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (02) :431-460
[24]   REGULARIZED TWO-STAGE STOCHASTIC VARIATIONAL INEQUALITIES FOR COURNOT-NASH EQUILIBRIUM UNDER UNCERTAINTY [J].
Jiang, Jie ;
Shi, Yun ;
Wang, Xiaozhou ;
Chen, Xiaojun .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (06) :813-842
[25]  
Juditsky A., 2011, Stochastic Systems, V1, P17, DOI 10.1287/10-SSY011
[26]   Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants [J].
Kannan, Aswin ;
Shanbhag, Uday V. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 74 (03) :779-820
[27]   Personalized goal-based investing via multi-stage stochastic goal programming [J].
Kim, Woo Chang ;
Kwon, Do-Gyun ;
Lee, Yongjae ;
Kim, Jang Ho ;
Lin, Changle .
QUANTITATIVE FINANCE, 2020, 20 (03) :515-526
[28]   Regularized Iterative Stochastic Approximation Methods for Stochastic Variational Inequality Problems [J].
Koshal, Jayash ;
Nedic, Angelia ;
Shanbhag, Uday V. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (03) :594-609
[29]   SIMPLE AND OPTIMAL METHODS FOR STOCHASTIC VARIATIONAL INEQUALITIES, I: OPERATOR EXTRAPOLATION [J].
Kotsalis, Georgios ;
Lan, Guanghui ;
Li, Tianjiao .
SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (03) :2041-2073
[30]  
Kravchuk AS., 2007, Variational and quasi-variational inequalities in mechanics, DOI [10.1007/978-1-4020-6377-0, DOI 10.1007/978-1-4020-6377-0]