Dynamic stochastic projection method for multistage stochastic variational inequalities

被引:0
作者
Zhou, Bin [1 ]
Jiang, Jie [2 ]
Sun, Hailin [1 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Key Lab NSLSCS, Jiangsu Int Joint Lab BDMCA,Minist Educ, Nanjing 210023, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Multistage stochastic variational inequalities; Stochastic approximation method; Inexact stochastic projection method; Dynamic stochastic projection method; Convergence rate; APPROXIMATION METHODS; UNCERTAINTY; SCHEMES; GAMES;
D O I
10.1007/s10589-024-00594-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Stochastic approximation (SA) type methods have been well studied for solving single-stage stochastic variational inequalities (SVIs). This paper proposes a dynamic stochastic projection method (DSPM) for solving multistage SVIs. In particular, we investigate an inexact single-stage SVI and present an inexact stochastic projection method (ISPM) for solving it. Then we give the DSPM to a three-stage SVI by applying the ISPM to each stage. We show that the DSPM can achieve an O(1 & varepsilon;2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}(\frac{1}{\epsilon <^>2})$$\end{document} convergence rate regarding to the total number of required scenarios for the three-stage SVI. We also extend the DSPM to the multistage SVI when the number of stages is larger than three. The numerical experiments illustrate the effectiveness and efficiency of the DSPM.
引用
收藏
页码:485 / 516
页数:32
相关论文
共 41 条
  • [1] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [2] Beck A., 2017, First-Order Methods in Optimization, DOI [DOI 10.1137/1.9781611974997, 10.1137/1.9781611974997]
  • [3] STOCHASTIC APPROXIMATION METHODS FOR THE TWO-STAGE STOCHASTIC LINEAR COMPLEMENTARITY PROBLEM
    Chen, Lin
    Liu, Yongchao
    Yang, Xinmin
    Zhang, Jin
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (03) : 2129 - 2155
  • [4] Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems
    Chen, Xiaojun
    Sun, Hailin
    Xu, Huifu
    [J]. MATHEMATICAL PROGRAMMING, 2019, 177 (1-2) : 255 - 289
  • [5] CONVERGENCE ANALYSIS OF SAMPLE AVERAGE APPROXIMATION OF TWO-STAGE STOCHASTIC GENERALIZED EQUATIONS
    Chen, Xiaojun
    Shapiro, Alexander
    Sun, Hailin
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) : 135 - 161
  • [6] Chen XJ, 2017, MATH PROGRAM, V165, P1, DOI 10.1007/s10107-017-1186-8
  • [7] Accelerated schemes for a class of variational inequalities
    Chen, Yunmei
    Lan, Guanghui
    Ouyang, Yuyuan
    [J]. MATHEMATICAL PROGRAMMING, 2017, 165 (01) : 113 - 149
  • [8] On the computation of equilibria in monotone and potential stochastic hierarchical games
    Cui, Shisheng
    Shanbhag, Uday, V
    [J]. MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1227 - 1285
  • [9] On the Analysis of Variance-reduced and Randomized Projection Variants of Single Projection Schemes for Monotone Stochastic Variational Inequality Problems
    Cui, Shisheng
    Shanbhag, Uday V.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (02) : 453 - 499
  • [10] Facchinei F., 2007, Springer Series in Operations Research