Comprehensive analysis of clinical images contributions for melanoma classification using convolutional neural networks

被引:1
作者
Rios-Duarte, Jorge A. [1 ,4 ]
Diaz-Valencia, Andres C. [1 ]
Combariza, German [2 ]
Feles, Miguel [2 ]
Pena-Silva, Ricardo A. [1 ,3 ,4 ]
机构
[1] Univ los Andes, Sch Med, Bogota, Colombia
[2] Univ Externado Colombia, Dept Math, Bogota, Colombia
[3] Harvard Univ, TH Chan Sch Publ Hlth, Lown Scholars Program, Boston, MA USA
[4] Univ los Andes, Sch Med, Pharmacol Lab, Bogota, Colombia
关键词
artificial intelligence; deep learning; dermoscopy images; melanoma; skin cancer; DIAGNOSIS; DERMATOLOGISTS; SURVIVAL; DELAYS;
D O I
10.1111/srt.13607
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
BackgroundTimely diagnosis plays a critical role in determining melanoma prognosis, prompting the development of deep learning models to aid clinicians. Questions persist regarding the efficacy of clinical images alone or in conjunction with dermoscopy images for model training. This study aims to compare the classification performance for melanoma of three types of CNN models: those trained on clinical images, dermoscopy images, and a combination of paired clinical and dermoscopy images from the same lesion. Materials and MethodsWe divided 914 image pairs into training, validation, and test sets. Models were built using pre-trained Inception-ResNetV2 convolutional layers for feature extraction, followed by binary classification. Training comprised 20 models per CNN type using sets of random hyperparameters. Best models were chosen based on validation AUC-ROC. ResultsSignificant AUC-ROC differences were found between clinical versus dermoscopy models (0.661 vs. 0.869, p < 0.001) and clinical versus clinical + dermoscopy models (0.661 vs. 0.822, p = 0.001). Significant sensitivity differences were found between clinical and dermoscopy models (0.513 vs. 0.799, p = 0.01), dermoscopy versus clinical + dermoscopy models (0.799 vs. 1.000, p = 0.02), and clinical versus clinical + dermoscopy models (0.513 vs. 1.000, p < 0.001). Significant specificity differences were found between dermoscopy versus clinical + dermoscopy models (0.800 vs. 0.288, p < 0.001) and clinical versus clinical + dermoscopy models (0.650 vs. 0.288, p < 0.001). ConclusionCNN models trained on dermoscopy images outperformed those relying solely on clinical images under our study conditions. The potential advantages of incorporating paired clinical and dermoscopy images for CNN-based melanoma classification appear less clear based on our findings.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Deep learning techniques for skin lesion analysis and melanoma cancer detection: a survey of state-of-the-art [J].
Adegun, Adekanmi ;
Viriri, Serestina .
ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (02) :811-841
[2]   Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma [J].
Balch, CM ;
Buzaid, AC ;
Soong, SJ ;
Atkins, MB ;
Cascinelli, N ;
Coit, DG ;
Fleming, ID ;
Gershenwald, JE ;
Houghton, A ;
Kirkwood, JM ;
McMasters, KM ;
Mihm, MF ;
Morton, DL ;
Reintgen, DS ;
Ross, MI ;
Sober, A ;
Thompson, JA ;
Thompson, JF .
JOURNAL OF CLINICAL ONCOLOGY, 2001, 19 (16) :3635-3648
[3]   Hair removal in dermoscopy images using variational autoencoders [J].
Bardou, Dalal ;
Bouaziz, Hamida ;
Lv, Laishui ;
Zhang, Ting .
SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (03) :445-454
[4]   Computer-aided classification of suspicious pigmented lesions using wide-field images [J].
Birkenfeld, Judith S. ;
Tucker-Schwartz, Jason M. ;
Soenksen, Luis R. ;
Aviles-Izquierdo, Jose A. ;
Marti-Fuster, Berta .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 195
[5]   Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Holland-Letz, Tim ;
Utikal, Jochen S. ;
von Kalle, Christof .
EUROPEAN JOURNAL OF CANCER, 2019, 113 :47-54
[6]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[7]   Checklist for Evaluation of Image-Based Artificial Intelligence Reports in Dermatology CLEAR Derm Consensus Guidelines From the International Skin Imaging Collaboration Artificial Intelligence Working Group [J].
Daneshjou, Roxana ;
Barata, Catarina ;
Betz-Stablein, Brigid ;
Celebi, M. Emre ;
Codella, Noel ;
Combalia, Marc ;
Guitera, Pascale ;
Gutman, David ;
Halpern, Allan ;
Helba, Brian ;
Kittler, Harald ;
Kose, Kivanc ;
Liopyris, Konstantinos ;
Malvehy, Josep ;
Seog, Han Seung ;
Soyer, H. Peter ;
Tkaczyk, Eric R. ;
Tschandl, Philipp ;
Rotemberg, Veronica .
JAMA DERMATOLOGY, 2022, 158 (01) :90-96
[8]   Population-Based 20-Year Survival Among People Diagnosed With Thin Melanomas in Queensland, Australia [J].
Green, Adele C. ;
Baade, Peter ;
Coory, Michael ;
Aitken, Joanne F. ;
Smithers, Mark .
JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (13) :1462-1467
[9]  
Groh M, 2021, Arxiv, DOI [arXiv:2104.09957, DOI 10.48550/ARXIV.2104.09957, 10.48550/arXiv.2104.09957]
[10]   Melanoma Skin Cancer Detection Using Recent Deep Learning Models [J].
Guergueb, Takfarines ;
Akhloufi, Moulay A. .
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, :3074-3077