Measure-valued affine and polynomial diffusions

被引:3
作者
Cuchiero, Christa [1 ]
Di Persio, Luca [2 ]
Guida, Francesco [3 ,4 ]
Svaluto-Ferro, Sara [5 ]
机构
[1] Univ Vienna, Dept Stat & Operat Res, Data Uni Vienna, Kolingasse 14, A-1090 Vienna, Austria
[2] Univ Verona, Dept Comp Sci, Str Grazie 15, I-37134 Verona, Italy
[3] Univ Trento, Via Sommarive 14, I-38123 Povo, Italy
[4] Univ Verona, Dept Math, Via Sommarive 14, I-38123 Povo, Italy
[5] Univ Verona, Dept Econ, Via Cantarane 24, I-37129 Verona, Italy
基金
奥地利科学基金会;
关键词
Measure-valued processes; Polynomial and affine diffusions; Dawson-Watanabe type superprocesses; Martingale problem; Maximum principle; VOLATILITY; MODELS;
D O I
10.1016/j.spa.2024.104392
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a class of measure-valued processes, which - in analogy to their finite dimensional counterparts- will be called measure-valued polynomial diffusions. We show the so-called moment formula, i.e. a representation of the conditional marginal moments via a system of finite dimensional linear PDEs. Furthermore, we characterize the corresponding infinitesimal generators obtaining a representation analogous to polynomial diffusions on R-+(m), in cases where their domain is large enough. In general the infinite dimensional setting allows for richer specifications strictly beyond this representation. As a special case, we recover measure-valued affine diffusions, sometimes also called Dawson-Watanabe superprocesses. From a mathematical finance point of view, the polynomial framework is especially attractive since it allows to transfer many famous finite dimensional models and their tractability properties to an infinite dimensional measure-valued setting.
引用
收藏
页数:29
相关论文
共 61 条
[1]   Linear credit risk models [J].
Ackerer, Damien ;
Filipovic, Damir .
FINANCE AND STOCHASTICS, 2020, 24 (01) :169-214
[2]   Option pricing with orthogonal polynomial expansions [J].
Ackerer, Damien ;
Filipovic, Damir .
MATHEMATICAL FINANCE, 2020, 30 (01) :47-84
[3]   The Jacobi stochastic volatility model [J].
Ackerer, Damien ;
Filipovic, Damir ;
Pulido, Sergio .
FINANCE AND STOCHASTICS, 2018, 22 (03) :667-700
[4]  
[Anonymous], 1999, Graduate Texts in Math
[5]  
Arendt W., 1986, One-parameter semigroups of positive operators, V1184
[6]   Jacobi stochastic volatility factor for the LIBOR market model [J].
Arrouy, Pierre-Edouard ;
Boumezoued, Alexandre ;
Lapeyre, Bernard ;
Mehalla, Sophian .
FINANCE AND STOCHASTICS, 2022, 26 (04) :771-823
[7]   Time-Non-Local Pearson Diffusions [J].
Ascione, Giacomo ;
Leonenko, Nikolai ;
Pirozzi, Enrica .
JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (03)
[8]  
Assefa J, 2022, Arxiv, DOI arXiv:2208.03939
[9]  
Bakry D., 1985, LECT NOTES MATH, P177
[10]  
Benth F.E., 2021, Digit. Finance, P1