Using Graphs to Perform Effective Sensor-Based Human Activity Recognition in Smart Homes

被引:0
|
作者
Srivatsa, P. [1 ]
Ploetz, Thomas [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
关键词
human-centered computing; ubiquitous and mobile computing; machine learning; smart-home; human activity recognition; pattern recognition;
D O I
10.3390/s24123944
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There has been a resurgence of applications focused on human activity recognition (HAR) in smart homes, especially in the field of ambient intelligence and assisted-living technologies. However, such applications present numerous significant challenges to any automated analysis system operating in the real world, such as variability, sparsity, and noise in sensor measurements. Although state-of-the-art HAR systems have made considerable strides in addressing some of these challenges, they suffer from a practical limitation: they require successful pre-segmentation of continuous sensor data streams prior to automated recognition, i.e., they assume that an oracle is present during deployment, and that it is capable of identifying time windows of interest across discrete sensor events. To overcome this limitation, we propose a novel graph-guided neural network approach that performs activity recognition by learning explicit co-firing relationships between sensors. We accomplish this by learning a more expressive graph structure representing the sensor network in a smart home in a data-driven manner. Our approach maps discrete input sensor measurements to a feature space through the application of attention mechanisms and hierarchical pooling of node embeddings. We demonstrate the effectiveness of our proposed approach by conducting several experiments on CASAS datasets, showing that the resulting graph-guided neural network outperforms the state-of-the-art method for HAR in smart homes across multiple datasets and by large margins. These results are promising because they push HAR for smart homes closer to real-world applications.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Sensor-Based Human Activity Recognition in Smart Homes Using Depthwise Separable Convolutions
    Alghazzawi, Daniyal
    Rabie, Osama
    Bamasaq, Omaima
    Albeshri, Aiiad
    Asghar, Muhammad Zubair
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2022, 12
  • [2] Neural Network Ensembles for Sensor-Based Human Activity Recognition Within Smart Environments
    Irvine, Naomi
    Nugent, Chris
    Zhang, Shuai
    Wang, Hui
    Ng, Wing W. Y.
    SENSORS, 2020, 20 (01)
  • [3] Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy
    Kondo, Kazuma
    Hasegawa, Tatsuhito
    SENSORS, 2021, 21 (22)
  • [4] Lifelong Learning in Sensor-Based Human Activity Recognition
    Ye, Juan
    Dobson, Simon
    Zambonelli, Franco
    IEEE PERVASIVE COMPUTING, 2019, 18 (03) : 49 - 58
  • [5] Deep learning and model personalization in sensor-based human activity recognition
    Ferrari A.
    Micucci D.
    Mobilio M.
    Napoletano P.
    Journal of Reliable Intelligent Environments, 2023, 9 (01) : 27 - 39
  • [6] AutoAugHAR: Automated Data Augmentation for Sensor-based Human Activity Recognition
    Zhou, Yexu
    Zhao, Haibin
    Huang, Yiran
    Roeddiger, Tobias
    Kurnaz, Murat
    Riedel, Till
    Beigl, Michael
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2024, 8 (02):
  • [7] A Practical Wearable Sensor-based Human Activity Recognition Research Pipeline
    Liu, Hui
    Hartmann, Yale
    Schultz, Tanja
    HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF, 2021, : 847 - 856
  • [8] Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes
    Bouchabou, Damien
    Nguyen, Sao Mai
    Lohr, Christophe
    LeDuc, Benoit
    Kanellos, Ioannis
    ELECTRONICS, 2021, 10 (20)
  • [9] Bootstrapping Human Activity Recognition Systems for Smart Homes from Scratch
    Hiremath, Shruthi K.
    Nishimura, Yasutaka
    Chernova, Sonia
    Plotz, Thomas
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2022, 6 (03):
  • [10] Layout-Agnostic Human Activity Recognition in Smart Homes through Textual Descriptions Of Sensor Triggers (TDOST)
    Thukral, Megha
    Dhekane, Sourish gunesh
    Hiremath, Shruthi k.
    Haresamudram, Harish
    Ploetz, Thomas
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2025, 9 (01):