Deciphering salt stress responses in Solanum pimpinellifolium through high-throughput phenotyping

被引:1
|
作者
Morton, Mitchell [1 ]
Fiene, Gabriele [1 ]
Ahmed, Hanin Ibrahim [1 ]
Rey, Elodie [1 ]
Abrouk, Michael [1 ]
Angel, Yoseline [1 ,2 ,3 ]
Johansen, Kasper [1 ]
Saber, Noha O. [1 ]
Malbeteau, Yoann [1 ]
Al-Mashharawi, Samir [1 ]
Ziliani, Matteo G. [1 ,4 ]
Aragon, Bruno [1 ]
Oakey, Helena [5 ]
Berger, Bettina [6 ]
Brien, Chris [6 ]
Krattinger, Simon G. [1 ]
Mousa, Magdi A. A. [7 ,8 ]
McCabe, Matthew F. [1 ]
Negrao, Sonia [1 ,9 ]
Tester, Mark [1 ]
Julkowska, Magdalena M. [1 ,10 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Plant Sci Program, Biol & Environm Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD USA
[4] Hydrosat Sarl, 9 Rue Lab, L-1911 Luxembourg City, Luxembourg
[5] Univ Adelaide, Robinson Inst, Adelaide, Australia
[6] Univ Adelaide, Australian Plant Phen Facil, Urrbrae, Australia
[7] King Abdulaziz Univ, Fac Environm Sci, Dept Agr, Jeddah 80208, Saudi Arabia
[8] Assiut Univ, Fac Agr, Dept Vegetable Crops, Assiut 71526, Egypt
[9] Univ Coll, Dublin, Ireland
[10] Boyce Thompson Inst Plant Res, Ithaca, NY USA
来源
PLANT JOURNAL | 2024年 / 119卷 / 05期
关键词
GWAS; high-throughput phenotyping; salt stress; Solanum; Solanum pimpinellifolium; water use efficiency; wild tomato; CULTIVATED TOMATO; WILD RELATIVES; SOIL-SALINITY; CROP; PLANTS; LEAF; RESISTANCE; EXPRESSION; TOLERANCE; GENES;
D O I
10.1111/tpj.16894
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.
引用
收藏
页码:2514 / 2537
页数:24
相关论文
共 50 条
  • [1] High-throughput phenotyping and AI technologies for deciphering crop resilience to heat stress
    Kundu, Sayanta
    Saini, Dinesh K.
    Meena, Rajesh K.
    Bahuguna, Rajeev N.
    Jagadish, S. V. Krishna
    PLANT PHYSIOLOGY REPORTS, 2024, 29 (04) : 699 - 715
  • [2] Phenotyping of rice in salt stress environment using high-throughput infrared imaging
    Smdiqui, Zamin S.
    Cho, Jung-Il
    Park, Sung-Han
    Kwon, Taek-Ryoun
    Ahn, Byung-Ok
    Lee, Gang-Seob
    Jeong, Mi-Jeong
    Kim, Kyung-Whan
    Lee, Seong-Kon
    Park, Soo-Chul
    ACTA BOTANICA CROATICA, 2014, 73 (01) : 149 - 158
  • [3] Maximizing nitrogen stress tolerance through high-throughput phenotyping in rice
    Duc, Nguyen Trung
    Harika, Amooru
    Raju, Dhandapani
    Kumar, Sudhir
    Pandey, Renu
    Ellur, Ranjith Kumar
    Krishnan, S. Gopala
    Allimuthu, Elangovan
    Singh, Biswabiplab
    Ramlal, Ayyagari
    Rajendran, Ambika
    Kumar, Ranjeet Ranjan
    Singh, Madan Pal
    Sahoo, Rabi Narayan
    Chinnusamy, Viswanathan
    PLANT STRESS, 2025, 15
  • [4] High-throughput phenotyping
    Natalie de Souza
    Nature Methods, 2010, 7 (1) : 36 - 36
  • [5] High-throughput phenotyping
    Gehan, Malia A.
    Kellogg, Elizabeth A.
    AMERICAN JOURNAL OF BOTANY, 2017, 104 (04) : 505 - 508
  • [6] High-throughput phenotyping
    de Souza, Natalie
    NATURE METHODS, 2010, 7 (01) : 36 - 36
  • [7] High-throughput phenotyping for resistance to Verticillium dahliae in wild Solanum species
    Fiorentino, L.
    Wouters, D.
    van As, W.
    Wiedmer, J.
    Wolters, J.
    Ascurra, Y. Torres
    Andriani, A.
    Brink, D.
    Verstegen, J.
    Roos, P.
    Schmitz, L.
    van de Zedde, R.
    Visser, R. G. F.
    Vleeshouwers, V. G. A. A.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2024, 37 (05) : 98 - 98
  • [8] Machine Learning for High-Throughput Stress Phenotyping in Plants
    Singh, Arti
    Ganapathysubramanian, Baskar
    Singh, Asheesh Kumar
    Sarkar, Soumik
    TRENDS IN PLANT SCIENCE, 2016, 21 (02) : 110 - 124
  • [9] RootBot: High-throughput root stress phenotyping robot
    Ruppel, Mia
    Nelson, Sven K.
    Sidberry, Grace
    Mitchell, Madison
    Kick, Daniel
    Thomas, Shawn K.
    Guill, Katherine E.
    Oliver, Melvin J.
    Washburn, Jacob D.
    APPLICATIONS IN PLANT SCIENCES, 2023,
  • [10] High-throughput mouse phenotyping
    Gates, Hilary
    Mallon, Ann-Marie
    Brown, Steve D. M.
    METHODS, 2011, 53 (04) : 394 - 404