A method for constructing quaternary Hermitian self-dual codes and an application to quantum codes

被引:0
作者
Harada, Masaaki [1 ]
机构
[1] Tohoku Univ, Res Ctr Pure & Appl Math, Grad Sch Informat Sci, Sendai 9808579, Japan
关键词
Self-dual code; Quaternary code; Hermitian self-dual code; LENGTHS; 18; CLASSIFICATION;
D O I
10.1007/s10623-024-01421-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce quaternary modified four mu \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} -circulant codes as a modification of four circulant codes. We give basic properties of quaternary modified four mu \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} -circulant Hermitian self-dual codes. We also construct quaternary modified four mu \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} -circulant Hermitian self-dual codes having large minimum weights. Two quaternary Hermitian self-dual [56, 28, 16] codes are constructed for the first time. These codes improve the previously known lower bound on the largest minimum weight among all quaternary (linear) [56, 28] codes. In addition, these codes imply the existence of a quantum [[56, 0, 16]] code.
引用
收藏
页码:2927 / 2948
页数:22
相关论文
共 50 条
[21]   Constructing formally self-dual codes from block λ-circulant matrices [J].
Kaya, Abidin ;
Yildiz, Bahattin .
MATHEMATICAL COMMUNICATIONS, 2019, 24 (01) :91-105
[22]   Self-dual Additive Codes Based of Paley Method [J].
Liu, Jian ;
Yu, Rongzu .
ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, :167-170
[23]   Self-dual codes with an automorphism of order 17 [J].
Gurel, Muberra ;
Yankov, Nikolay .
MATHEMATICAL COMMUNICATIONS, 2016, 21 (01) :97-107
[24]   Quantum Codes Constructed from Self-Dual Codes and Maximal Self-Orthogonal Codes Over F5 [J].
Guo, Luobin ;
Ma, Yuena ;
Feng, Youqian .
2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 :3448-3453
[25]   Some self-dual codes and isodual codes constructed by matrix product codes [J].
Pan, Xu ;
Chen, Hao ;
Liu, Hongwei .
DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (11) :3533-3559
[26]   DUAL TRANSFORM AND PROJECTIVE SELF-DUAL CODES [J].
Bouyukliev, Iliya ;
Bouyuklieva, Stefka .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (02) :328-341
[27]   Construction of reversible self-dual codes [J].
Kim, Hyun Jin ;
Choi, Whan-Hyuk ;
Lee, Yoonjin .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 67
[28]   AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES [J].
Kim, Jon-Lark ;
Lee, Yoonjin .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) :915-923
[29]   ON THE EXISTENCE OF MRD SELF-DUAL CODES [J].
Berhuy, Gregory .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2025, 19 (02) :546-559
[30]   The classification of self-dual modular codes [J].
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) :442-460