On relativistic hydrodynamics: bernoulli process equations

被引:1
作者
Guemez, J. [1 ]
Mier, J. A. [1 ]
机构
[1] Univ Cantabria, Appl Phys Dept, Santander, Spain
关键词
special relativity; hydrodynamics; bernoulli equation;
D O I
10.1088/1402-4896/ad7333
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A relativistic covariant description of a Bernoulli process is presented in terms of a set of two fundamental equations: Newton's second law and the first law of thermodynamics. The set is first obtained in the rest frame of the process S, then in a frame S<overline> moving at a constant velocity relative to S. It is shown that the set is covariant under Lorentz transformation, and reduces to the classical equations at the low-speed limit.
引用
收藏
页数:18
相关论文
共 29 条
[1]  
[Anonymous], 1956, Am. J. Phys, DOI DOI 10.1119/1.1934200
[2]  
Badeer H. S., 1989, Physics Teacher, V27, P598, DOI 10.1119/1.2342887
[3]  
Bauman R. P., 1994, Phys. Teach, V32, P478, DOI [10.1119/1.2344087, DOI 10.1119/1.2344087]
[4]   An alternative derivation of Bernoulli's principle [J].
Bauman, RP .
AMERICAN JOURNAL OF PHYSICS, 2000, 68 (03) :288-289
[5]  
Breger L., 1982, Phys. Teach, V20, P248, DOI [10.1119/1.2341017, DOI 10.1119/1.2341017]
[6]   A CRITIQUE OF DEFINITIONS OF HEAT [J].
CANAGARATNA, SG .
AMERICAN JOURNAL OF PHYSICS, 1969, 37 (07) :679-+
[7]  
DAuria R., 2012, From Special Relativity to Feynman Diagrams, DOI [10.1007/978-3-319-22014-7, DOI 10.1007/978-3-319-22014-7]
[8]  
de Sousa C. A., 1997, European Journal of Physics, V18, P334, DOI 10.1088/0143-0807/18/5/004
[9]  
Feynman RP., 1963, FEYNMAN LECT PHYS
[10]   Extending the application of the relativity principle: Some pedogogical advantages [J].
Galili, I ;
Kaplan, D .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (04) :328-335