Proposal on rain attenuation prediction method using convolutional neural network

被引:0
|
作者
Komatsuya, Yuji [1 ]
Imai, Tetsuro [1 ]
Hirose, Miyuki [2 ]
机构
[1] Tokyo Denki Univ, Dept Informat & Commun Engn, Adachi Ku, Tokyo 1208551, Japan
[2] Kyushu Inst Technol, Dept Elect Engn & Elect, Tobata Ku, Kitakyushu Shi, Fukuoka 8048550, Japan
来源
IEICE COMMUNICATIONS EXPRESS | 2024年 / 13卷 / 06期
关键词
rain attenuation; convolutional neural network; deep learning;
D O I
10.23919/comex.2024SPL0015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the practical application of HAPS (High Altitude Platform Station) as the next -generation communication platform is studied actively. HAPS employs adaptive rain attenuation countermeasure techniques such as site diversity methods, therefore it is ideal to predict rain attenuation on the path in real time. We proposed real-time rain attenuation prediction method by convolutional neural network that inputs image of rainfall rate and path distance. Result showed that prediction accuracy of our proposed method is better than a method using conventional formulas.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [21] Prediction of Wave Power Generation Using a Convolutional Neural Network with Multiple Inputs
    Ni, Chenhua
    Ma, Xiandong
    ENERGIES, 2018, 11 (08)
  • [22] Important Trading Point Prediction Using a Hybrid Convolutional Recurrent Neural Network
    Yu, Xinpeng
    Li, Dagang
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [23] Using a Separable Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction
    Arnold Loaiza, F.
    Herrera, Jose
    Luis Mantilla, S. C.
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON COMPUTER MODELING AND SIMULATION (ICCMS 2018), 2017, : 157 - 161
  • [24] A new method for segmentation of medical image using convolutional neural network
    Luo, Fugui
    Qin, Yunchu
    Li, Mingzhen
    Song, Qian
    JOURNAL OF OPTICS-INDIA, 2024, 53 (04): : 3411 - 3420
  • [25] A Method of Speech Coding for Speech Recognition Using a Convolutional Neural Network
    Kubanek, Mariusz
    Bobulski, Janusz
    Kulawik, Joanna
    SYMMETRY-BASEL, 2019, 11 (09): : 1 - 12
  • [26] A Robust Abnormal Behavior Detection Method Using Convolutional Neural Network
    Tay, Nian Chi
    Connie, Tee
    Ong, Thian Song
    Goh, Kah Ong Michael
    Teh, Pin Shen
    COMPUTATIONAL SCIENCE AND TECHNOLOGY, 2019, 481 : 37 - 47
  • [27] Deep convolutional neural network for diabetes mellitus prediction
    Suja A. Alex
    J. Jesu Vedha Nayahi
    H. Shine
    Vaisshalli Gopirekha
    Neural Computing and Applications, 2022, 34 : 1319 - 1327
  • [28] THE METHOD OF HYDRODYNAMIC MODELING USING A CONVOLUTIONAL NEURAL NETWORK
    Novotarskyi, M. A.
    Kuzmych, V. A.
    RADIO ELECTRONICS COMPUTER SCIENCE CONTROL, 2023, (04) : 58 - 68
  • [29] Method of Rain Attenuation Prediction Based on Long-Short Term Memory Network
    Cornejo, Andres
    Landeros-Ayala, Salvador
    Matias, Jose M.
    Ortiz-Gomez, Flor
    Martinez, Ramon
    Salas-Natera, Miguel
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 2959 - 2995
  • [30] Deep convolutional neural network for diabetes mellitus prediction
    Alex, Suja A.
    Nayahi, J. Jesu Vedha
    Shine, H.
    Gopirekha, Vaisshalli
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02) : 1319 - 1327