Proposal on rain attenuation prediction method using convolutional neural network

被引:0
|
作者
Komatsuya, Yuji [1 ]
Imai, Tetsuro [1 ]
Hirose, Miyuki [2 ]
机构
[1] Tokyo Denki Univ, Dept Informat & Commun Engn, Adachi Ku, Tokyo 1208551, Japan
[2] Kyushu Inst Technol, Dept Elect Engn & Elect, Tobata Ku, Kitakyushu Shi, Fukuoka 8048550, Japan
来源
IEICE COMMUNICATIONS EXPRESS | 2024年 / 13卷 / 06期
关键词
rain attenuation; convolutional neural network; deep learning;
D O I
10.23919/comex.2024SPL0015
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, the practical application of HAPS (High Altitude Platform Station) as the next -generation communication platform is studied actively. HAPS employs adaptive rain attenuation countermeasure techniques such as site diversity methods, therefore it is ideal to predict rain attenuation on the path in real time. We proposed real-time rain attenuation prediction method by convolutional neural network that inputs image of rainfall rate and path distance. Result showed that prediction accuracy of our proposed method is better than a method using conventional formulas.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [1] Rain Attenuation Prediction Using Artificial Neural Network for Dynamic Rain Fade Mitigation
    Ahuna, M. N.
    Afullo, T. J.
    Alonge, A. A.
    SAIEE AFRICA RESEARCH JOURNAL, 2019, 110 (01): : 11 - 18
  • [2] Bioactivity Prediction Using Convolutional Neural Network
    Hamza, Hentabli
    Nasser, Maged
    Salim, Naomie
    Saeed, Faisal
    EMERGING TRENDS IN INTELLIGENT COMPUTING AND INFORMATICS: DATA SCIENCE, INTELLIGENT INFORMATION SYSTEMS AND SMART COMPUTING, 2020, 1073 : 341 - 351
  • [3] A deep learning method for prediction of cardiovascular disease using convolutional neural network
    Sajja T.K.
    Kalluri H.K.
    Revue d'Intelligence Artificielle, 2020, 34 (05) : 601 - 606
  • [4] Brain Age Prediction Using a Lightweight Convolutional Neural Network
    Eltashani, Fatma
    Parreno-Centeno, Mario
    Cole, James H.
    Papa, Joao Paulo
    Costen, Fumie
    IEEE ACCESS, 2025, 13 : 6750 - 6763
  • [5] Disruption prediction using a full convolutional neural network on EAST
    Guo, B. H.
    Shen, B.
    Chen, D. L.
    Rea, C.
    Granetz, R. S.
    Huang, Y.
    Zeng, L.
    Zhang, H.
    Qian, J. P.
    Sun, Y. W.
    Xiao, B. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (02)
  • [6] Seismic response prediction method for building structures using convolutional neural network
    Oh, Byung Kwan
    Park, Youngjun
    Park, Hyo Seon
    STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (05)
  • [7] Tropical Cyclone Intensity Prediction Using Deep Convolutional Neural Network
    Xu, Xiao-Yan
    Shao, Min
    Chen, Pu-Long
    Wang, Qin-Geng
    ATMOSPHERE, 2022, 13 (05)
  • [8] CORONARY LUMINAL AND WALL MASK PREDICTION USING CONVOLUTIONAL NEURAL NETWORK
    Hong, Y.
    Hong, Y-M.
    Jang, Y.
    Kim, S.
    Jeon, B.
    Jung, S.
    Ha, S.
    Han, D.
    Shim, H.
    Chang, H. J.
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1049 - 1052
  • [9] DigiNet: Prediction of Assamese handwritten digits using convolutional neural network
    Dutta, Prarthana
    Muppalaneni, Naresh Babu
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (24)
  • [10] Hotspot Prediction Using 1D Convolutional Neural Network
    Syarifudin, Mohammad Anang
    Novitasari, Dian Candra Rini
    Marpaung, Faridawaty
    Wahyudi, Noor
    Hapsari, Dian Puspita
    Supriyati, Endang
    Farida, Yuniar
    Amin, Faris Muslihul
    Nugraheni, R. R. Diah
    Ilham
    Nariswari, Rinda
    Setiawan, Fajar
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 845 - 853