High-density nanodot structures on silicon solar cell surfaces irradiated by ultraviolet laser pulses below the melting threshold fluence

被引:0
作者
Hirai, Kenta [1 ]
Tanaka, Tomoyo [1 ]
Tsutsumi, Daisuke [1 ]
Hashida, Masaki [2 ,3 ]
Sakagami, Hitoshi [2 ,4 ]
Kusaba, Mitsuhiro [1 ]
机构
[1] Osaka Sangyo Univ, Dept Elect Elect & Informat Engn, 3-1-1 Nakagaito, Daito, Osaka 5748530, Japan
[2] Tokai Univ, RIST, 4-1-1 Kitakaname, Hiratsuka 2591292, Japan
[3] Kyoto Univ, ICR, Gokasho, Uji 6110011, Japan
[4] Natl Inst Fus Sci, 322-6 Oroshi Cho, Tokai, Gifu 5095292, Japan
关键词
silicon solar cells; melting threshold; nanodot structure; excimer laser; compressive stress; QUANTUM CONFINEMENT; BAND-GAP;
D O I
10.1088/1361-6463/ad58ec
中图分类号
O59 [应用物理学];
学科分类号
摘要
The surface morphology of silicon solar cells irradiated with KrF excimer laser pulses (lambda = 248 nm, tau = 20 ns) was investigated below the experimentally observed melting threshold fluence (F th) of 0.47 J cm-2 (+/- 20%). At laser fluences of 0.23-0.48 J cm-2 (equivalent to 0.49F th to 1.0F th), nanodot structures with a height and width of approximately 60-120 nm were periodically formed with an interdot spacing similar to the laser wavelength. The observed nanodot density (29 dots mu m2) was higher than that previously obtained at longer wavelengths. Furthermore, crystallinity analysis by micro-Raman spectroscopy revealed a Raman shift of 519.56 cm-1 after irradiation (N= 1500 pulses), compared with 518.27 cm-1 prior to irradiation. A laser fluence of 0.41 J cm-2 ( = 0.87F th) was found to induce compressive stress on the silicon solar cell surface.
引用
收藏
页数:7
相关论文
共 26 条
[1]   22.8-PERCENT EFFICIENT SILICON SOLAR-CELL [J].
BLAKERS, AW ;
WANG, A ;
MILNE, AM ;
ZHAO, JH ;
GREEN, MA .
APPLIED PHYSICS LETTERS, 1989, 55 (13) :1363-1365
[2]   Femtosecond laser-induced periodic surface structures [J].
Bonse, J. ;
Krueger, J. ;
Hoehm, S. ;
Rosenfeld, A. .
JOURNAL OF LASER APPLICATIONS, 2012, 24 (04)
[3]   Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances [J].
Buividas, Riacardas ;
Mikutis, Mindaugas ;
Juodkazis, Saulius .
PROGRESS IN QUANTUM ELECTRONICS, 2014, 38 (03) :119-156
[4]   Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting [J].
Chen, Q. ;
Hubbard, G. ;
Shields, P. A. ;
Liu, C. ;
Allsopp, D. W. E. ;
Wang, W. N. ;
Abbott, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (26)
[5]   QUANTUM CONFINEMENT IN SI NANOCRYSTALS [J].
DELLEY, B ;
STEIGMEIER, EF .
PHYSICAL REVIEW B, 1993, 47 (03) :1397-1400
[6]   Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses [J].
Gemini, Laura ;
Hashida, Masaki ;
Shimizu, Masahiro ;
Miyasaka, Yasuhiro ;
Inoue, Shunsuke ;
Tokita, Shigeki ;
Limpouch, Jiri ;
Mocek, Tomas ;
Sakabe, Shuji .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (19)
[7]   Solar cell efficiency tables (Version 58) [J].
Green, Martin A. ;
Dunlop, Ewan D. ;
Hohl-Ebinger, Jochen ;
Yoshita, Masahiro ;
Kopidakis, Nikos ;
Hao, Xiaojing .
PROGRESS IN PHOTOVOLTAICS, 2021, 29 (07) :657-667
[8]   Nanostructures produced by ultraviolet laser irradiation of silicon. II. Nanoprotrusions and nanoparticles [J].
Guan, YF ;
Pedraza, AJ ;
Fowlkes, JD ;
Joy, DA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (06) :2836-2843
[9]  
Hirai K., 2023, PAP TECHN M LIGHT AP, P7
[10]   Modulated surface textures for enhanced light trapping in thin-film silicon solar cells [J].
Isabella, Olindo ;
Krc, Janez ;
Zeman, Miro .
APPLIED PHYSICS LETTERS, 2010, 97 (10)