Quantized Weyl algebras, the double centralizer property, and a new first fundamental theorem for U q ( gl n )

被引:1
作者
Letzter, Gail [1 ]
Sahi, Siddhartha [2 ]
Salmasian, Hadi [3 ]
机构
[1] Natl Secur Agcy, Math Res Grp, Ft George G Meade, MD USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
double centralizer theorem; quantized Weyl algebras; first fundamental theorem; quantum groups; QUANTUM; POLYNOMIALS; REPRESENTATIONS; ANALOG;
D O I
10.1088/1751-8121/ad3ef1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let P := P (m x n) denote the quantized coordinate ring of the space of m x n matrices, equipped with natural actions of the quantized enveloping algebras U q ( gl (m) ) and U q ( gl (n) ) . Let L and R denote the images of U q ( gl (m) ) and U q ( gl( )(n) ) in End ( P ) , respectively. We define a q-analogue of the algebra of polynomial-coefficient differential operators inside End ( P ) , henceforth denoted by P D , and we prove that L boolean AND P D and R boolean AND P D are mutual centralizers inside P D . Using this, we establish a new First Fundamental theorem of invariant theory for U (q) ( gl (n) ) . We also compute explicit formulas in terms of q-determinants for generators of the algebras L h boolean AND P D and R h boolean AND P D , where L h and R h denote the images of the Cartan subalgebras of U (q )( gl m ) and U (q) ( gl (n) ) in End ( P ) , respectively. Our algebra P D and the algebra Pol ( Mat (m , n) ) q that is defined in (Shklyarov et al 2004 Int. J. Math. 15 855-94) are related by extension of scalars, but we give a new construction of P D using deformed twisted tensor products.
引用
收藏
页数:67
相关论文
共 25 条
[1]   On a q-analog of the Wallach-Okounkov formula [J].
Bershtein, O. ;
Kolisnyk, Ye. ;
Vaksman, L. .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) :97-109
[2]  
Chari V., 1994, GUIDE QUANTUM GROUPS
[3]  
Etingof P., 2015, Tensor categories, Mathematical Surveys and Monographs, V205
[4]   Q-ANALOGS OF CLIFFORD AND WEYL ALGEBRAS - SPINOR AND OSCILLATOR REPRESENTATIONS OF QUANTUM ENVELOPING-ALGEBRAS [J].
HAYASHI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (01) :129-144
[5]  
Howe R., 1995, SCHUR LECT 1992 TEL, V8
[6]   Determinantal Ideals and the Canonical Commutation Relations: Classically or Quantized [J].
Jakobsen, Hans Plesner .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 398 (01) :375-438
[7]  
Jantzen J.C., 1996, Graduate studies in Mathematics
[8]   SEPARATION OF VARIABLES FOR QUANTIZED ENVELOPING-ALGEBRAS [J].
JOSEPH, A ;
LETZTER, G .
AMERICAN JOURNAL OF MATHEMATICS, 1994, 116 (01) :127-177
[9]  
Klimyk A., 1997, TEXTS MONOGRAPHS PHY, DOI [10.1007/978-3-642-60896-4, DOI 10.1007/978-3-642-60896-4]
[10]  
Knop F, 1997, COMMENT MATH HELV, V72, P84