Pioneer Venus Orbiter Observations of Solar Wind Driven Magnetosonic Waves Interacting With the Dayside Venusian Ionosphere

被引:0
作者
Fowler, C. M. [1 ]
Ledvina, S. [2 ]
Chaston, C. C. [2 ]
Persson, M. [3 ]
Ramstad, R. [4 ]
Luhmann, J. [2 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[2] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA USA
[3] Swedish Inst Space Phys, Uppsala, Sweden
[4] Lab Atmospher & Space Phys, Boulder, CO USA
关键词
Venus solar wind interaction; magnetosonic waves; Venus magnetosphere; Venus ionosphere; ion heating; MAGNETIC-FIELD FLUCTUATIONS; BOW SHOCK; ELECTRON-TEMPERATURE; SPACE PLASMAS; FLUX ROPES; ION ESCAPE; MARS; ACCELERATION; ENERGIZATION; CONSEQUENCES;
D O I
10.1029/2024GL109613
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We use in situ plasma observations made by the Pioneer Venus Orbiter spacecraft to show for the first time that magnetosonic waves can couple the solar wind to the upper ionosphere and deposit energy there. The waves are generated upstream of Venus, are advected into the shock and propagate across the draped magnetic field, through the magnetosheath and into the dayside upper ionosphere. The magnetosonic waves damp in the upper ionosphere in a region where physical collisions are rare, and electromagnetic forces must control this damping. The waves damp when the ionospheric heavy ion density is a few thousand cm(-3) and wave-particle interactions with the dominant O+ ions are postulated as the damping mechanism. Estimates of ion heating rates show that 1%-5% of the O+ ion distribution function could be heated to escape energy in 10-40 s. Plain Language Summary Our Sun emits a stream of charged particles radially outward into our Solar system, known as the solar wind. When the solar wind encounters obstacles such as planets and comets, a variety of forces may act to divert the flow around the obstacle, much like when flowing water in a stream encounters a rock and is diverted around it. This study uses measurements made by a spacecraft that orbited Venus, known as Pioneer Venus Orbiter, to investigate some of the side effects that can arise when the solar wind flow is diverted around Venus. We show for the first time how a particular pathway allows energy to be deposited from the flowing solar wind into the Venusian atmosphere, and that this energy can be deposited quickly enough to significantly impact the particles in the atmosphere. The characteristics observed in this study at Venus are similar to those at Mars where this process has also been observed, suggesting that the solar wind can interact with the two planets in similar ways in this respect.
引用
收藏
页数:12
相关论文
共 73 条
  • [1] Ambipolar Electric Field in the Martian Ionosphere: MAVEN Measurements
    Akbari, H.
    Andersson, L.
    Peterson, W. K.
    Espley, J.
    Benna, M.
    Ergun, R.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (06) : 4518 - 4524
  • [2] Theories and observations of ion energization and outflow in the high latitude magnetosphere
    Andre, M
    Yau, A
    [J]. SPACE SCIENCE REVIEWS, 1997, 80 (1-2) : 27 - 48
  • [3] The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission
    Barabash, S.
    Sauvaud, J.-A.
    Gunell, H.
    Andersson, H.
    Grigoriev, A.
    Brinkfeldt, K.
    Holinstroem, M.
    Lundin, R.
    Yamauchi, M.
    Asamura, K.
    Baumjohann, W.
    Zhang, T. L.
    Coates, A. J.
    Linder, D. R.
    Kataria, D. O.
    Curtis, C. C.
    Hsieh, K. C.
    Sandel, B. R.
    Fedorov, A.
    Mazelle, C.
    Thocaven, J. J.
    Grande, M.
    Koskinen, Hannu E. J.
    Kallio, E.
    Saeles, T.
    Riihela, P.
    Kozyra, J.
    Krupp, N.
    Woch, J.
    Luhmann, J.
    McKenna-Lawlor, S.
    Orsini, S.
    Cerulli-Irelli, R.
    Mura, M.
    Milillo, M.
    Maggi, M.
    Roelof, E.
    Brandt, P.
    Russell, C. T.
    Szego, K.
    Winningham, J. D.
    Frahm, R. A.
    Scherrer, J.
    Sharber, J. R.
    Wurz, P.
    Bochsler, P.
    [J]. PLANETARY AND SPACE SCIENCE, 2007, 55 (12) : 1772 - 1792
  • [4] MGS MAG/ER observations at the magnetic pileup boundary of Mars:: draping enhancement and low frequency waves
    Bertucci, C
    Mazelle, C
    Crider, DH
    Mitchell, DL
    Sauer, K
    Acuña, MH
    Connerney, JEP
    Lin, RP
    Ness, NF
    Winterhalter, D
    [J]. COMPARATIVE MAGNETOSPHERES, 2004, 33 (11): : 1938 - 1944
  • [5] The Induced Magnetospheres of Mars, Venus, and Titan
    Bertucci, C.
    Duru, F.
    Edberg, N.
    Fraenz, M.
    Martinecz, C.
    Szego, K.
    Vaisberg, O.
    [J]. SPACE SCIENCE REVIEWS, 2011, 162 (1-4) : 113 - 171
  • [6] Brace L., 1993, NASA Planetary Data System, DOI [10.17189/ktv3-t936, DOI 10.17189/KTV3-T936]
  • [7] The dynamic behavior of the Venus ionosphere in response to solar wind interactions
    Brace, L. H.
    Theis, R. F.
    Hoegy, W. R.
    Wolfe, J. H.
    Mihalov, J. D.
    Russell, C. T.
    Elphic, R. C.
    Nagy, A. F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1980, 85 (A13) : 7663 - 7678
  • [8] Brace L. H., 2024, NASA Planetary Data System, DOI [10.17189/307h-k863, DOI 10.17189/307H-K863]
  • [9] Characteristics of electromagnetic proton cyclotron waves along auroral field lines observed by FAST in regions of upward current
    Chaston, CC
    Ergun, RE
    Delory, GT
    Peria, W
    Temerin, M
    Cattell, C
    Strangeway, R
    McFadden, JP
    Carlson, CW
    Elphic, RC
    Klumpar, DM
    Peterson, WK
    Moebius, E
    Pfaff, R
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (12) : 2057 - 2060
  • [10] Cloutier P., 2024, NASA Planetary Data System, DOI [10.17189/1tg5-ar16, DOI 10.17189/1TG5-AR16]