Review of techniques for the in-situ sterilization of soil contaminated with Bacillus anthracis spores or other pathogens

被引:5
作者
Wood, Joseph P. [1 ]
机构
[1] US EPA, Off Res & Dev, Homeland Secur Res Program, 109 TW Alexander Dr,POB 12055, Res Triangle Pk, NC 27709 USA
关键词
Sterilization; Bacillus anthracis; Soil; Disinfection; Pathogens; In-situ soil remediation; SUBTILIS VAR NIGER; METHYL-BROMIDE; STEAM STERILIZATION; BACTERIAL-SPORES; DECONTAMINATION; INACTIVATION; EFFICACY; THURINGIENSIS; EPIDEMIOLOGY; DISINFECTION;
D O I
10.1016/j.resmic.2023.104175
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
This review summarizes the literature on ef ficacy of techniques to sterilize soil. Soil may need to be sterilized if contaminated with pathogens such as Bacillus anthracis . Sterilizing soil in -situ minimizes spread of the bio-contaminant. Soil is dif ficult to sterilize, with ef ficacy generally diminishing with depth. Methyl bromide, formaldehyde, and glutaraldehyde are the only soil treatment options that have been demonstrated at full-scale to effectively inactivate Bacillus spores. Soil sterilization modalities with high ef ficacy at bench-scale include wet and dry heat, metam sodium, chlorine dioxide gas, and activated sodium persulfate. Simple oxidants such as chlorine bleach are ineffective in sterilizing soil. Published by Elsevier Masson SAS on behalf of Institut Pasteur. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:8
相关论文
共 94 条
[1]  
[Anonymous], 2008, Anthrax in humans and animals
[2]   Degradation of petroleum hydrocarbons in unsaturated soil and effects on subsequent biodegradation by potassium permanganate [J].
Bajagain, Rishikesh ;
Gautam, Prakash ;
Jeong, Seung-Woo .
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2020, 42 (06) :1705-1714
[3]   Yersinia pestis: the Natural History of Plague [J].
Barbieri, R. ;
Signoli, M. ;
Cheve, D. ;
Costedoat, C. ;
Tzortzis, S. ;
Aboudharam, G. ;
Raoult, D. ;
Drancourt, M. .
CLINICAL MICROBIOLOGY REVIEWS, 2021, 34 (01) :1-44
[4]   Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms [J].
Bishop, A. H. .
JOURNAL OF APPLIED MICROBIOLOGY, 2014, 117 (05) :1274-1282
[5]   Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecologic niche modeling [J].
Blackburn, Jason K. ;
McNyset, Kristina M. ;
Curtis, Andrew ;
Hugh-Jones, Martin E. .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2007, 77 (06) :1103-1110
[6]   The Necrophagous Fly Anthrax Transmission Pathway: Empirical and Genetic Evidence from Wildlife Epizootics [J].
Blackburn, Jason K. ;
Van Ert, Matthew ;
Mullins, Jocelyn C. ;
Hadfield, Ted L. ;
Hugh-Jones, Martin E. .
VECTOR-BORNE AND ZOONOTIC DISEASES, 2014, 14 (08) :576-583
[7]  
Blecker LA., 2012, Soil Fumigation Manual
[8]   DRY HEAT INACTIVATION OF BACILLUS-SUBTILIS VAR NIGER SPORES AS A FUNCTION OF RELATIVE HUMIDITY [J].
BRANNEN, JP ;
GARST, DM .
APPLIED MICROBIOLOGY, 1972, 23 (06) :1125-&
[9]   Reoccurring Bovine Anthrax in Germany on the Same Pasture after 12 Years [J].
Braun, Peter ;
Beyer, Wolfgang ;
Hanczaruk, Matthias ;
Riehm, Julia M. ;
Antwerpen, Markus ;
Otterbein, Christian ;
Oesterheld, Jacqueline ;
Grass, Gregor .
JOURNAL OF CLINICAL MICROBIOLOGY, 2022, 60 (03)
[10]   Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis [J].
Buhr, T. L. ;
Young, A. A. ;
Bensman, M. ;
Minter, Z. A. ;
Kennihan, N. L. ;
Johnson, C. A. ;
Bohmke, M. D. ;
Borgers-Klonkowski, E. ;
Osborn, E. B. ;
Avila, S. D. ;
Theys, A. M. G. ;
Jackson, P. J. .
JOURNAL OF APPLIED MICROBIOLOGY, 2016, 120 (04) :1074-1084