Local Resonance Prediction Based on Physics-Informed Machine Learning in Piezoelectric Metamaterials

被引:0
|
作者
Wang, Ting [1 ]
Zhou, Qianyu [1 ]
Tang, Jiong [1 ]
机构
[1] Univ Connecticut, Sch Mech Aerosp & Mfg Engn, Storrs, CT 06269 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS XVIII | 2024年 / 12946卷
关键词
local resonance; machine learning; piezoelectric metamaterials; wave attenuation; BEAMS;
D O I
10.1117/12.3011030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Under ideal assumptions of infinite lattices where the infinite wave attenuation intensity is achievable, the bandgap estimation considers the bandgap bounds to achieve broadened band width. However, for practical applications in which finite or limited numbers of unit cells are allowed, the induced bandgap region actually includes frequencies with poor wave attenuation intensity. Therefore, for realizing true wave attenuation applications at targeted operating frequencies, it is of critical importance to locate the operating frequency not only within the bandgap region but also at which the wave attenuation intensity is strongest. To address this issue, we explore a tool for estimating the operating frequency with strong wave attenuation intensity from local resonances of scattering unit cells. Since the implicit correlation between the local resonance and the frequency location of strong wave attenuation intensity is determined by multiple parameters and cannot be analytically expressed by the complicated modeling, we suggest a physics-informed machine leaning approach. By introducing analytical modeling physics into the machine learning models, both the operating frequency and the corresponding achievable strongest wave attenuation intensity can be predicted, which could provide insight into the future design and optimization in the piezoelectrical local resonance metamaterials field.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Physics-informed machine learning models for ship speed prediction
    Lang, Xiao
    Wu, Da
    Mao, Wengang
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [2] Physics-informed machine learning for grade prediction in froth flotation
    Nasiri, Mahdi
    Iqbal, Sahel
    Sarkka, Simo
    MINERALS ENGINEERING, 2025, 227
  • [3] The scaling of physics-informed machine learning with data and dimensions
    Miller S.T.
    Lindner J.F.
    Choudhary A.
    Sinha S.
    Ditto W.L.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [4] Parsimony as the ultimate regularizer for physics-informed machine learning
    J. Nathan Kutz
    Steven L. Brunton
    Nonlinear Dynamics, 2022, 107 : 1801 - 1817
  • [5] Parsimony as the ultimate regularizer for physics-informed machine learning
    Kutz, J. Nathan
    Brunton, Steven L.
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1801 - 1817
  • [6] Physics-Informed Machine Learning for Optical Modes in Composites
    Ghosh, Abantika
    Elhamod, Mohannad
    Bu, Jie
    Lee, Wei-Cheng
    Karpatne, Anuj
    Podolskiy, Viktor A.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (11):
  • [7] Physics-Informed Machine Learning for metal additive manufacturing
    Farrag, Abdelrahman
    Yang, Yuxin
    Cao, Nieqing
    Won, Daehan
    Jin, Yu
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (01) : 171 - 185
  • [8] Advancing material property prediction: using physics-informed machine learning models for viscosity
    Chew, Alex K.
    Sender, Matthew
    Kaplan, Zachary
    Chandrasekaran, Anand
    Chief Elk, Jackson
    Browning, Andrea R.
    Kwak, H. Shaun
    Halls, Mathew D.
    Afzal, Mohammad Atif Faiz
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01)
  • [9] A physics-informed machine learning model for time-dependent wave runup prediction
    Naeini, Saeed Saviz
    Snaiki, Reda
    OCEAN ENGINEERING, 2024, 295
  • [10] Physics-informed machine learning model for prediction of ground reflected wave peak overpressure
    Zhang, Haoyu
    Xu, Yuxin
    Xiao, Lihan
    Zhen, Canjie
    DEFENCE TECHNOLOGY, 2024, 41 : 119 - 133