The inverse problem for a class of implicit differential equations and the coisotropic embedding theorem

被引:1
作者
Schiavone, L. [1 ]
机构
[1] Univ Carlos III Madrid Leganes, Dept Matemat, Madrid, Spain
关键词
Inverse problem; symplectic geometry; coisotropic embeddings; implicit differential equations; gauge theories; CALCULUS; GEOMETRY;
D O I
10.1142/S0219887824501950
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We carry on the approach used in [L. Schiavone, The inverse problem within free Electrodynamics and the coisotropic embedding theorem, Inter. J. Geom. Meth. Mod. Phys. 21(7) (2024) 2450131] to provide a solution for the inverse problem of the calculus of variations for Maxwell equations in vacuum and we provide an abstract theory including all implicit differential equations that can be formulated in terms of vector fields over pre-symplectic manifolds.
引用
收藏
页数:9
相关论文
共 50 条
[1]   The inverse problem within free Electrodynamics and the coisotropic embedding theorem [J].
Schiavone, L. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (07)
[2]   Solvability of One Class of Inverse Problem for Partial Differential Equations [J].
Tursunov, D. A. ;
Kozhobekov, K. G. ;
Mamytov, A. O. ;
Matieva, B. E. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (07) :3453-3462
[3]   A uniqueness theorem in the inverse problem for the integrodifferential electrodynamics equations [J].
Nazarov A.L. ;
Romanov V.G. .
Journal of Applied and Industrial Mathematics, 2012, 6 (4) :460-468
[4]   Inverse kernel determination problem for a class of pseudo-parabolic integro-differential equations [J].
Durdiev, D. K. ;
Elmuradova, H. B. ;
Rahmonov, A. A. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2025, 29 (01)
[5]   On the inverse variational problem for one class of quasilinear equations [J].
Tunitsky, D., V .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 148
[6]   An inverse problem of determining orders of systems of fractional pseudo-differential equations [J].
Ashurov, Ravshan ;
Umarov, Sabir .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (01) :109-127
[7]   AN INVERSE PROBLEM FOR A CLASS OF QUASI-LINEAR PARABOLIC EQUATIONS [J].
LIN, YP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (01) :146-156
[8]   AN INVERSE PROBLEM FOR SOME CLASSES OF LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
Tadumadze, Tamaz .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2009, 8 (02) :239-250
[9]   Jacobi bracket, differential identities, and the inverse problem for kinetic equations [J].
M. V. Neshchadim .
Doklady Mathematics, 2011, 83 :41-44
[10]   The asymptotic behavior of solutions to an inverse problem for differential operator equations [J].
Güvenilir, AF ;
Kalantarov, VK .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (9-10) :907-914