On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems

被引:0
作者
Preuss, Oliver Ludger [1 ]
Rook, Jeroen [2 ]
Trautmann, Heike [1 ,2 ]
机构
[1] Paderborn Univ, Machine Learning & Optimisat, Paderborn, Germany
[2] Univ Twente, Data Management & Biometr, Enschede, Netherlands
来源
APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I | 2024年 / 14634卷
关键词
Automated Algorithm Configuration; Multi-Objective Optimisation; Multimodality; Evolutionary Computation;
D O I
10.1007/978-3-031-56852-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The complexity of Multi-Objective (MO) continuous optimisation problems arises from a combination of different characteristics, such as the level of multi-modality. Earlier studies revealed that there is a conflict between solver convergence in objective space and solution set diversity in the decision space, which is especially important in the multi-modal setting. We build on top of this observation and investigate this trade-off in a multi-objective manner by using multi-objective automated algorithm configuration (MO-AAC) on evolutionary multi-objective algorithms (EMOA). Our results show that MO-AAC is able to find configurations that outperform the default configuration as well as configurations found by single-objective AAC in regards to objective space convergence and diversity in decision space, leading to new recommendations for high-performing default settings.
引用
收藏
页码:305 / 321
页数:17
相关论文
共 30 条
  • [1] Afsar B., 2023, Many-criteria optimization and decision analysis: State-of-the-art, present challenges, and future perspectives, P113, DOI [10.1007/978-3-031-25263-15, DOI 10.1007/978-3-031-25263-15]
  • [2] Performance indicators in multiobjective optimization
    Audet, Charles
    Bigeon, Jean
    Cartier, Dominique
    Le Digabel, Sebastien
    Salomon, Ludovic
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (02) : 397 - 422
  • [3] SMS-EMOA: Multiobjective selection based on dominated hypervolume
    Beume, Nicola
    Naujoks, Boris
    Emmerich, Michael
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1653 - 1669
  • [4] MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework
    Blot, Aymeric
    Hoos, Holger H.
    Jourdan, Laetitia
    Kessaci-Marmion, Marie-Eleonore
    Trautmann, Heike
    [J]. LEARNING AND INTELLIGENT OPTIMIZATION (LION 10), 2016, 10079 : 32 - 47
  • [5] Brockhoff D, 2019, Arxiv, DOI [arXiv:1604.00359, DOI 10.48550/ARXIV.1604.00359]
  • [6] Hyper-heuristics: a survey of the state of the art
    Burke, Edmund K.
    Gendreau, Michel
    Hyde, Matthew
    Kendall, Graham
    Ochoa, Gabriela
    Oezcan, Ender
    Qu, Rong
    [J]. JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (12) : 1695 - 1724
  • [7] Coello C. A. C., 2007, Evolutionary algorithms for solving multi-objective problems, DOI 10.1007/978-0-387-36797-2
  • [8] Deb K, 2005, LECT NOTES COMPUT SC, V3410, P47
  • [9] Deb K, 2004, ADV INFO KNOW PROC, P105
  • [10] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197