Generalized Fourier-Feynman Transform of Bounded Cylinder Functions on the Function Space Ca,b[0, T]

被引:0
作者
Choi, Jae Gil [1 ]
机构
[1] Dankook Univ, Dept Math, Cheonan 31116, South Korea
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2024年 / 64卷 / 02期
关键词
generalized Brownian motion process; general Wiener space; generalized analytic Feynman integral; generalized analytic Fourier-Feynman transform; cylinder function; FORMULAS;
D O I
10.5666/KMJ.2024.64.2.219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the generalized Fourier-Feynman transform (GFFT) for functions on the general Wiener space C-a,C-b[0, T]. We establish an explicit evaluation formula for the analytic GFFT of bounded cylinder functions on C-a,C-b[0, T]. We start by examining certain cylinder functions which belong in a Banach algebra of bounded functions on C-a,C-b[0, T]. We then obtain an explicit formula for the analytic GFFT of the bounded cylinder functions.
引用
收藏
页码:219 / 233
页数:15
相关论文
共 20 条
[1]  
BRUE M. D., 1972, A functional transform for Feynman integrals similar to the Fourier transform
[2]  
CAMERON RH, 1976, MICH MATH J, V23, P1
[3]   ANALYTIC FEYNMAN INTEGRAL SOLUTIONS OF AN INTEGRAL-EQUATION RELATED TO THE SCHROEDINGER EQUATION [J].
CAMERON, RH ;
STORVICK, DA .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 38 :34-66
[4]  
Cameron RobertH., 1980, PROCEEDINGS, V798, P18
[5]  
Chang K. S., 1984, J. Korean Math. Soc., V21, P21
[6]  
Chang K. S., 1987, Rend. Circ. Mat. Palermo, V17, P153
[7]  
CHANG KS, 1987, P AM MATH SOC, V100, P309
[8]   Evaluation formulas for conditional function space integrals I [J].
Chang, Seung Jun ;
Choi, Jae Gil ;
Skoug, David .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (01) :141-168
[9]   Generalized Fourier-Feynman transforms and a first variation on function space [J].
Chang, SJ ;
Skoug, D .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (05) :375-393
[10]   Integration by parts formulas involving generalized Fourier-Feynman transforms on function space [J].
Chang, SJ ;
Choi, JG ;
Skoug, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (07) :2925-2948