Fiber bundle deposition model and variable speed printing strategy for in-situ impregnation 3D printing of continuous fiber reinforced thermoplastic composites

被引:2
作者
Quan, Zhenzhen [1 ]
Liu, Cheng [1 ]
Li, Junjie [1 ]
Qin, Xiaohong [1 ]
Yu, Jianyong [2 ]
机构
[1] Donghua Univ, Coll Text, Key Lab Text Sci & Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Donghua Univ, Innovat Ctr Text Sci & Technol, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Fused filament fabrication (FFF); Continuous fiber reinforced thermoplastic; composites; Fiber bundle deposition model; Printing speed; Finite element analysis; MULTIDIRECTIONAL PREFORMS; CARBON; POLYMER; GLASS;
D O I
10.1016/j.compscitech.2024.110723
中图分类号
TB33 [复合材料];
学科分类号
摘要
In the in-situ impregnation 3D printing of continuous fiber reinforced thermoplastic composites (CFRTPCs) at constant printing speed, in order to pursue higher printing efficiency, a higher speed for printing is adopted generally, which has no effect on the printing of the straight section, but at the same speed of printing at the corner, the printing speed will cause the fiber bundle to deviate from the printing path at the corner, which affects the accurate laying of fiber bundle along the printing path. Obviously, reducing the printing speed is an effective method to improve the print quality at the turn, but printing the entire part at the reduced speed will greatly limit the overall printing speed. However, the problem of different corner angles and shifting points from the straight section of high-speed printing to the corner section of low-speed printing has been puzzling researchers. In this paper, a fiber bundle deposition model has been proposed to reveal the deposition of fiber bundles, and the maximum offsets of fiber bundles were predicted under different turning angles. Compared with the measured results, the prediction error at different turning angles ranged from -1.07 % to 10.30 %. Then, combining with the finite element analysis method, the fiber bundle deposition model was adopted to study the effects of printing speeds, and the maximum printing speeds for different printing angles and the variable printing speed strategy have been put forward. The results have revealed that, by using the optimized variable printing speed strategy, the surface quality of the fabricated parts and the deposition of the fiber bundles along the designed printing path were significantly improved. The fiber bundle deposition model and the variable speed printing strategy could be helpful for the high-precision 3D printing of CFRTPCs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [2] Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide
    Ye, Wenli
    Lin, Guoqiang
    Wu, Wenzheng
    Geng, Peng
    Hu, Xue
    Gao, Zhiwei
    Zhao, Ji
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 121 : 457 - 464
  • [3] 3D printing of continuous fiber-reinforced thermoset composites
    He, Xu
    Ding, Yuchen
    Lei, Zepeng
    Welch, Sam
    Zhang, Wei
    Dunn, Martin
    Yu, Kai
    ADDITIVE MANUFACTURING, 2021, 40
  • [4] 3D Printing and Performance of Continuous Fiber Reinforced Variable Stiffness Composite Structures
    Hou Z.
    Tian X.
    Zhu W.
    Lan H.
    Li D.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2022, 58 (05): : 170 - 177
  • [5] Process Evaluation, Tensile Properties and Fatigue Resistance of Chopped and Continuous Fiber Reinforced Thermoplastic Composites by 3D Printing
    Chen, Wei
    Zhang, Qiuju
    Cao, Han
    Yuan, Ye
    JOURNAL OF RENEWABLE MATERIALS, 2022, 10 (02) : 329 - 358
  • [6] Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in-situ impregnated 3D printing
    Cheng, Ping
    Wang, Kui
    Chen, Xuanzhen
    Wang, Jin
    Peng, Yong
    Ahzi, Said
    Chen, Chao
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
  • [7] 3D printing of continuous carbon fiber reinforced thermoset composites using UV curable resin
    Rahman, Md Atikur
    Islam, Md Zahirul
    Gibbon, Luke
    Ulven, Chad A.
    La Scala, John J.
    POLYMER COMPOSITES, 2021, 42 (11) : 5859 - 5868
  • [8] Investigation of 3D printing strategy on the mechanical performance of coextruded continuous carbon fiber reinforced PETG
    Kasmi, Samir
    Ginoux, Geoffrey
    Allaoui, Samir
    Alix, Sebastien
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (37)
  • [9] 3D printing of continuous fiber reinforced cellular structural composites for the study of bending performance
    Cui, Ziying
    Huang, Xiayan
    Jia, Mengwei
    Panahi-Sarmad, Mahyar
    Hossen, M. D. Imran
    Dong, Ke
    Xiao, Xueliang
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2023, 42 (13-14) : 673 - 684
  • [10] Research on Heating Zone Length of Continuous Fiber Reinforced Composites 3D Printing Nozzle
    Wang, Yesong
    Wang, Qing
    Kong, Dekun
    Liu, Jiang
    CHEMISTRYSELECT, 2021, 6 (41): : 11293 - 11298