Nonadiabatic topological transfer in a nanomechanical phononic lattice

被引:2
|
作者
Tian, Tian [1 ,2 ,3 ,4 ]
Cai, Han [5 ]
Zhang, Liang [6 ]
Zhang, Yichuan [3 ,4 ,7 ]
Duan, Chang-Kui [3 ,4 ,7 ]
Zhou, Jingwei [3 ,4 ,7 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
[3] Univ Sci & Technol China, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[5] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[6] Zhejiang Univ, Inst Quantum Sensing, Hangzhou 310027, Peoples R China
[7] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
QUANTUM INFORMATION;
D O I
10.1103/PhysRevB.109.125123
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topologically protected boundary transport is a promising route to realize robust quantum manipulation between distant nodes. Conventional topological transports require a long transmission time to meet adiabatic evolution, which unfortunately becomes a significant obstacle for practical quantum systems with decoherence. Here, we report a fast and robust phonon transfer by breaking this adiabatic limitation in a one-dimensional nanomechanical topological interface lattice. The high-fidelity nonadiabatic topological transfer (NTT) can be predicted accurately via the localized mode and bulk levels. A dynamical method is then put forward to characterize the nonadiabatic oscillation of the NTT according to the chiral symmetry, and the oscillation of the instantaneous adiabaticity is measured by the phonon population on the even nanomechanical resonators. Furthermore, we confirm the robustness under various noises and the scalability of the NTT. Our results open the door to accelerating topological transport, which is valuable for developing fast and robust quantum information transfer protocols.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Transport and localization in a topological phononic lattice with correlated disorder
    Ong, Zhun-Yong
    Lee, Ching Hua
    PHYSICAL REVIEW B, 2016, 94 (13)
  • [2] Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice
    张亮
    田添
    黄璞
    林劭春
    杜江峰
    Chinese Physics Letters, 2020, 37 (01) : 25 - 34
  • [3] Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice
    张亮
    田添
    黄璞
    林劭春
    杜江峰
    Chinese Physics Letters, 2020, (01) : 25 - 34
  • [4] Coherent Transfer of Excitation in a Nanomechanical Artificial Lattice
    Zhang, Liang
    Tian, Tian
    Huang, Pu
    Lin, Shaochun
    Du, Jiangfeng
    CHINESE PHYSICS LETTERS, 2020, 37 (01)
  • [5] Dynamic Observation of Topological Soliton States in a Programmable Nanomechanical Lattice
    Lin, Shaochun
    Zhang, Liang
    Tian, Tian
    Duan, Chang-Kui
    Du, Jiangfeng
    NANO LETTERS, 2021, 21 (02) : 1025 - 1031
  • [6] Controllable photonic and phononic topological state transfers in a small optomechanical lattice
    Qi, Lu
    Wang, Guo-Li
    Liu, Shutian
    Zhang, Shou
    Wang, Hong-Fu
    OPTICS LETTERS, 2020, 45 (07) : 2018 - 2021
  • [7] Nonadiabatic Shifting of a Topological Interface in an Electroacoustic Su-Schrieffer-Heeger Lattice
    Kuchibhatla, Sai Aditya Raman
    Leamy, Michael J.
    PHYSICAL REVIEW APPLIED, 2022, 18 (05)
  • [8] Topological design of phononic band gap crystals with sixfold symmetric hexagonal lattice
    Zhang, Zhaoxuan
    Li, Yang Fan
    Meng, Fei
    Huang, Xiaodong
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 139 : 97 - 105
  • [9] Topological Phononic Logic
    Pirie, Harris
    Sadhuka, Shuvom
    Wang, Jennifer
    Andrei, Radu
    Hoffman, Jennifer E.
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [10] Topological phononic metamaterials
    Zhu, Weiwei
    Deng, Weiyin
    Liu, Yang
    Lu, Jiuyang
    Wang, Hai-Xiao
    Lin, Zhi-Kang
    Huang, Xueqin
    Jiang, Jian-Hua
    Liu, Zhengyou
    REPORTS ON PROGRESS IN PHYSICS, 2023, 86 (10)