An adaptive seismic random noise attenuation method based on Engl criterion using curvelet transform

被引:0
作者
Yin, Hanjun [1 ,2 ]
Cao, Jingjie [1 ,2 ]
Yang, Helong [1 ,2 ]
Chen, Xue [1 ,2 ]
机构
[1] Hebei GEO Univ, Key Lab Intelligent Detect & Equipment Underground, Minist Nat Resources, Shijiazhuang 050031, Hebei, Peoples R China
[2] Hebei GEO Univ, Hebei Key Lab Strateg Crit Mineral Resources, Shijiazhuang 050031, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Random noise attenuation; Curvelet sparse transform; Engl criterion; T-X; THRESHOLDING ALGORITHM; PREDICTION; SHRINKAGE; SIGNAL;
D O I
10.1016/j.jappgeo.2024.105416
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Random noise attenuation method based on sparse inversion require accurately estimating a threshold matching the noise energy to ensure reliable denoising. However, noise properties vary across datasets, necessitating manual tuning which can be computationally expensive and labor-intensive. To address this issue, this work proposes an adaptive seismic random noise attenuation technique based on Engl criterion using Curvelet sparse transform. By leveraging the inherent trade-off between solution sparsity and fitting error during the iteration, the method automatically determines an optimal threshold for attenuation without requiring prior noise estimation. Effectiveness is demonstrated through synthetic and field data experiments, with results showing comparable performance over state -of -art approaches. The adaptive nature eliminates tedious manual tuning while the Curvelet-based sparse formulation handles nonlinearity of seismic events. This noise -agnostic automated approach enables efficient high -quality denoising across diverse datasets with minimal user intervention. The simplicity, efficiency, and reliability signify its viability for practical workflows demanding customizable random noise suppression.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] LATERAL PREDICTION FOR NOISE ATTENUATION BY T-X AND F-X TECHNIQUES
    ABMA, R
    CLAERBOUT, J
    [J]. GEOPHYSICS, 1995, 60 (06) : 1887 - 1896
  • [2] Random noise attenuation in seismic data using Hankel sparse low-rank approximation
    Anvari, Rasoul
    Kahoo, Amin Roshandel
    Monfared, Mehrdad Soleimani
    Mohammadi, Mokhtar
    Omer, Rebaz Mohammed Dler
    Mohammed, Adil Hussien
    [J]. COMPUTERS & GEOSCIENCES, 2021, 153
  • [3] Seismic Random Noise Attenuation Using Sparse Low-Rank Estimation of the Signal in the Time-Frequency Domain
    Anvari, Rasoul
    Kahoo, Amin Roshandel
    Mohammadi, Mokhtar
    Khan, Nabeel Ali
    Chen, Yangkang
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1612 - 1618
  • [4] Enhancing 3-D Seismic Data Using the t-SVD and Optimal Shrinkage of Singular Value
    Anvari, Rasoul
    Mohammadi, Mokhtar
    Kahoo, Amin Roshandel
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) : 382 - 388
  • [5] Seismic Random Noise Attenuation Using Synchrosqueezed Wavelet Transform and Low-Rank Signal Matrix Approximation
    Anvari, Rasoul
    Siahsar, Mohammad Amir Nazari
    Gholtashi, Saman
    Kahoo, Amin Roshandel
    Mohammadi, Mokhtar
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (11): : 6574 - 6581
  • [6] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [7] New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities
    Candès, EJ
    Donoho, DL
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) : 219 - 266
  • [8] Fast discrete curvelet transforms
    Candes, Emmanuel
    Demanet, Laurent
    Donoho, David
    Ying, Lexing
    [J]. MULTISCALE MODELING & SIMULATION, 2006, 5 (03) : 861 - 899
  • [9] Interpolation of Irregularly Sampled Noisy Seismic Data with the Nonconvex Regularization and Proximal Method
    Cao, Jing-Jie
    Yao, Gang
    da Silva, Nuno, V
    [J]. PURE AND APPLIED GEOPHYSICS, 2022, 179 (02) : 663 - 678
  • [10] A novel thresholding method for simultaneous seismic data reconstruction and denoising
    Cao, Jingjie
    Cai, Zhicheng
    Liang, Wenquan
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2020, 177