Synchronous Generator Dual Estimation Using Sigma Points Kalman Filter

被引:1
作者
Zoghi, M. [1 ]
Yaghobi, H. [1 ]
机构
[1] Semnan Univ, Fac Elect & Comp Engn, Semnan, Iran
来源
INTERNATIONAL JOURNAL OF ENGINEERING | 2024年 / 37卷 / 07期
关键词
Synchronous Generator; Kalman Filter; Centeral Diffrence Kalman Filter; Estimation; PARAMETERS; TRACKING; STATE;
D O I
10.5829/ije.2024.37.07a.04
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, the central difference Kalman filter (CDKF) has been used to estimate the parameters of two different models of synchronous generator (SG) in the presence of noise. It should be mentioned that there are different models of synchronous generators with different levels of accuracy for use in estimation algorithms. The estimation algorithm in this paper uses a smaller number of measurement inputs to estimate the states and unknown parameters for two exact models of the synchronous generator. The central difference Kalman filter (CDKF) is a member of the Kalman filter family, which, like the unscented Kalman filter (UKF), uses sigma points to model nonlinear equations. The differential Kalman filter (CDKF) provides better results than the unscented Kalman filter. In this research, by using two synchronous generator models with different parameters in three scenarios, the ability of the Kalman filter of the central difference is challenged, which shows that this method is very efficient and reliable.
引用
收藏
页码:1239 / 1251
页数:13
相关论文
共 50 条
[21]   Solar Irradiance Estimation Using Kalman Filter [J].
Vinícius Souza Madureira ;
Thiago Pereira das Chagas ;
Gildson Queiroz de Jesus .
Journal of Control, Automation and Electrical Systems, 2020, 31 :1447-1457
[22]   Estimation of wave propagation using a Kalman filter [J].
Takagi, T ;
Inamoto, K ;
Kawahara, M .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1997, 9 (01) :77-84
[23]   Enhanced Motion Estimation using Kalman Filter [J].
Bajaj, Manish ;
Lall, Brejesh .
IETE JOURNAL OF RESEARCH, 2012, 58 (02) :171-175
[24]   Sea State Estimation using Kalman Filter [J].
Fangbemi, Kossivi ;
Boje, Edward ;
Verrinder, Robyn A. .
2019 IEEE AFRICON, 2019,
[25]   Event-Triggered Approach to Dynamic State Estimation of a Synchronous Machine Using Cubature Kalman Filter [J].
Kooshkbaghi, Marzieh ;
Marquez, Horacio J. ;
Xu, Wilsun .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2020, 28 (05) :2013-2020
[26]   Permanent Magnet Synchronous Motor Speed and Position Estimation Using Reduced -Order Extended Kalman Filter [J].
Su, Jiayi ;
Schneider, Susan ;
Yaz, Edwin .
IFAC PAPERSONLINE, 2024, 58 (28) :774-779
[27]   Kalman Filter for Trust Estimation in VANETs [J].
Bhargava, Arpita ;
Verma, Shekhar ;
Chaurasia, Brijesh Kumar .
2015 IEEE UP SECTION CONFERENCE ON ELECTRICAL COMPUTER AND ELECTRONICS (UPCON), 2015,
[28]   BAYESIAN-ESTIMATION AND THE KALMAN FILTER [J].
BARKER, AL ;
BROWN, DE ;
MARTIN, WN .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (10) :55-77
[29]   Dual Extended Kalman Filter Under Minimum Error Entropy With Fiducial Points [J].
Dang, Lujuan ;
Chen, Badong ;
Xia, Yili ;
Lan, Jian ;
Liu, Meiqin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (12) :7588-7599
[30]   Low-Cost Parameter Estimation Approach for Modular Converters and Reconfigurable Battery Systems Using Dual Kalman Filter [J].
Tashakor, Nima ;
Arabsalmanabadi, Bita ;
Naseri, Farshid ;
Goetz, Stefan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (06) :6323-6334