Structural, optical, and magnetic characterization of Er-doped In 2 O 3 nanoparticles

被引:4
作者
de Brito, Alex Soares [1 ,2 ]
Oliveira, Aline A. [1 ]
Valerio-Cuadros, Marlon Ivan [1 ]
Tupan, Lilian Felipe S. [1 ]
Gualdi, Alexandre Jose [3 ]
Barco, Reginaldo [1 ]
Ivashita, Flavio F. [1 ]
de Araujo, Jose Humberto [4 ]
Torres, Marco Antonio M. [4 ]
Paesano Jr, Andrea [1 ,4 ]
机构
[1] Univ Estadual Maringa, Dept Fis, Maringa, PR, Brazil
[2] Inst Fed Parana, Assis Chateaubriand, PR, Brazil
[3] Dept Fis UFSCar, Dept Fis, Sao Carlos, SP, Brazil
[4] Univ Fed Rio Grande do Norte, UFRN Natal, Natal, RN, Brazil
关键词
Indium oxide; Energy gap; Magnetic properties; Bound magnetic polarons; Er-doped In2O3; ROOM-TEMPERATURE FERROMAGNETISM; RAY PHOTOELECTRON-SPECTROSCOPY; OXIDE; SEMICONDUCTORS; TRANSITION;
D O I
10.1016/j.jallcom.2024.174353
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(In1-xErx)(2)O-3 nanoparticles were synthesized by lyophilization of an aqueous solution of indium and erbium acetates and then applying heat treatments. These nanoparticles were characterized regarding their structural, optical, and magnetic properties over a temperature range of 2-300 K. For x <= 0.04, all samples were monophasic, crystallized with cubic structure (Ia-3 space group), and characterized by oxygen vacancies. Er doping reduced the crystallite size and increased the lattice strain. However, no change in energy bandgap was observed after erbium dilution in the oxide matrix. The doped samples were paramagnetic over the entire temperature range, but at low temperatures paramagnetism coexisted with a ferromagnetic phase. The ferromagnetism was attributed to the presence of magnetic polarons acting as mediators of the coupling between the Er3+ ions. The low-temperature segments of the magnetization curves, i.e., M(T< 20 K), were successfully fitted based on the Bound Magnetic Polaron model.
引用
收藏
页数:9
相关论文
共 68 条
[41]   Chemical, morphological, structural, optical, and magnetic properties of Zn1-xNdxO nanoparticles [J].
Poornaprakash, B. ;
Chalapathi, U. ;
Vattikuti, S. V. Prabhakar ;
Balakrishna, A. ;
Swart, H. C. ;
Suh, Youngsuk ;
Park, Si-Hyun .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (24) :20650-20657
[42]   Oxide-diluted magnetic semiconductors: a review of the experimental status [J].
Prellier, W ;
Fouchet, A ;
Mercey, B .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (37) :R1583-R1601
[43]   Control of ferromagnetism via electron doping in In2O3:Cr [J].
Raebiger, Hannes ;
Lany, Stephan ;
Zunger, Alex .
PHYSICAL REVIEW LETTERS, 2008, 101 (02)
[44]   RECENT ADVANCES IN MAGNETIC-STRUCTURE DETERMINATION BY NEUTRON POWDER DIFFRACTION [J].
RODRIGUEZCARVAJAL, J .
PHYSICA B, 1993, 192 (1-2) :55-69
[45]   Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes [J].
Roqan, I. S. ;
Venkatesh, S. ;
Zhang, Z. ;
Hussain, S. ;
Bantounas, I. ;
Franklin, J. B. ;
Flemban, T. H. ;
Zou, B. ;
Lee, J. -S. ;
Schwingenschlogl, U. ;
Petrov, P. K. ;
Ryan, M. P. ;
Alford, N. M. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (07)
[46]   Induction of Nd3+ dependent ferromagnetic phase in In2O3 semiconductor nanoparticles prepared by combustion method [J].
Salkar, Kapil Y. ;
Tangsali, R. B. ;
Gad, R. S. .
PHYSICA B-CONDENSED MATTER, 2021, 612
[47]   XRD, HRTEM, Raman and magnetic studies on chemically prepared nanocrystalline Fe-doped gadolinium oxide (Gd1.90Fe0.10O3-δ) annealed in vacuum [J].
Sarkar, B. J. ;
Deb, A. K. ;
Chakrabarti, P. K. .
RSC ADVANCES, 2016, 6 (08) :6395-6404
[48]   Paramagnetic to ferromagnetic phase transition of Co doped Gd2O3 prepared by chemical route [J].
Sarkar, B. J. ;
Bandyopadhyay, A. ;
Mandal, J. ;
Deb, A. K. ;
Chakrabarti, P. K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 656 :339-346
[49]   Zinc oxide-based diluted magnetic semiconductors [J].
Seshadri, Ram .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2005, 9 (1-2) :1-7
[50]   REVISED EFFECTIVE IONIC-RADII AND SYSTEMATIC STUDIES OF INTERATOMIC DISTANCES IN HALIDES AND CHALCOGENIDES [J].
SHANNON, RD .
ACTA CRYSTALLOGRAPHICA SECTION A, 1976, 32 (SEP1) :751-767