Brain-inspired computing with self-assembled networks of nano-objects

被引:10
作者
Vahl, Alexander [1 ,2 ]
Milano, Gianluca [3 ]
Kuncic, Zdenka [4 ,5 ]
Brown, Simon A. [6 ]
Milani, Paolo [7 ]
机构
[1] Univ Kiel, Fac Engn, Chair Multicomponent Mat, Dept Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany
[2] Leibniz Inst Plasma Sci & Technol, Felix Hausdorff Str 2, D-17489 Greifswald, Germany
[3] INRiM Ist Nazl Ric Metrol, Adv Mat Metrol & Life Sci Div, Str Cacce 91, I-10135 Turin, Italy
[4] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
[6] Univ Canterbury, MacDiarmid Inst Adv Mat & Nanotechnol, Sch Phys & Chem Sci, Te Kura Matu, Christchurch 8140, New Zealand
[7] Univ Milan, CIMAINA Ctr Interdisciplinare Mat & Interfacce Nan, Dipartimento Fis A Pontremoli, Via Celoria 16, I-20133 Milan, Italy
关键词
self-assembled; networks; nano-objects; neuromorphic; CLUSTER DEPOSITION; NEURONAL AVALANCHES; NEURAL-NETWORKS; PERCOLATION; MEMORY; FILMS; CRITICALITY; ARRAYS; CLASSIFICATION; PARTICLES;
D O I
10.1088/1361-6463/ad7a82
中图分类号
O59 [应用物理学];
学科分类号
摘要
Major efforts to reproduce functionalities and energy efficiency of the brain have been focused on the development of artificial neuromorphic systems based on crossbar arrays of memristive devices fabricated by top-down lithographic technologies. Although very powerful, this approach does not emulate the topology and the emergent behavior of biological neuronal circuits, where the principle of self-organization regulates both structure and function. In materia computing has been proposed as an alternative exploiting the complexity and collective phenomena originating from various classes of physical substrates composed of a large number of non-linear nanoscale junctions. Systems obtained by the self-assembling of nano-objects like nanoparticles and nanowires show spatio-temporal correlations in their electrical activity and functional synaptic connectivity with nonlinear dynamics. The development of design-less networks offers powerful brain-inspired computing capabilities and the possibility of investigating critical dynamics in complex adaptive systems. Here we review and discuss the relevant aspects concerning the fabrication, characterization, modeling, and implementation of networks of nanostructures for data processing and computing applications. Different nanoscale electrical conduction mechanisms and their influence on the meso- and macroscopic functional properties of the systems are considered. Criticality, avalanche effects, edge-of-chaos, emergent behavior, synaptic functionalities are discussed in detail together with applications for unconventional computing. Finally, we discuss the challenges related to the integration of nanostructured networks and with standard microelectronics architectures.
引用
收藏
页数:24
相关论文
共 222 条
[1]   Stochastic Spiking Behavior in Neuromorphic Networks Enables True Random Number Generation [J].
Acharya, Susant K. ;
Galli, Edoardo ;
Mallinson, Joshua B. ;
Bose, Saurabh K. ;
Wagner, Ford ;
Heywood, Zachary E. ;
Bones, Philip J. ;
Arnold, Matthew D. ;
Brown, Simon A. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (44) :52861-52870
[2]   Performance of reservoir computing in a random network of single-walled carbon nanotubes complexed with polyoxometalate [J].
Akai-Kasaya, Megumi ;
Takeshima, Yuki ;
Kan, Shaohua ;
Nakajima, Kohei ;
Oya, Takahide ;
Asai, Tetsuya .
NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (01)
[3]   Pattern classification by memristive crossbar circuits using ex situ and in situ training [J].
Alibart, Fabien ;
Zamanidoost, Elham ;
Strukov, Dmitri B. .
NATURE COMMUNICATIONS, 2013, 4
[4]   Neuromorphic Atomic Switch Networks [J].
Avizienis, Audrius V. ;
Sillin, Henry O. ;
Martin-Olmos, Cristina ;
Shieh, Hsien Hang ;
Aono, Masakazu ;
Stieg, Adam Z. ;
Gimzewski, James K. .
PLOS ONE, 2012, 7 (08)
[5]   Molecular dynamics simulations of reflection and adhesion behavior in Lennard-Jones cluster deposition [J].
Awasthi, A. ;
Hendy, S. C. ;
Zoontjens, P. ;
Brown, S. A. ;
Natali, F. .
PHYSICAL REVIEW B, 2007, 76 (11)
[6]   Reentrant adhesion behavior in nanocluster deposition [J].
Awasthi, A. ;
Hendy, S. C. ;
Zoontjens, P. ;
Brown, S. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   Coefficient of restitution for bouncing nanoparticles [J].
Ayesh, A. I. ;
Brown, S. A. ;
Awasthi, A. ;
Hendy, S. C. ;
Convers, P. Y. ;
Nichol, K. .
PHYSICAL REVIEW B, 2010, 81 (19)
[8]   Percolation and tunneling in composite materials [J].
Balberg, I ;
Azulay, D ;
Toker, D ;
Millo, O .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (15) :2091-2121
[9]   A pulsed microplasma source of high intensity supersonic carbon cluster beams [J].
Barborini, E ;
Piseri, P ;
Milani, P .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (21) :L105-L109
[10]   The influence of nanoscale morphology on the resistivity of cluster-assembled nanostructured metallic thin films [J].
Barborini, E. ;
Corbelli, G. ;
Bertolini, G. ;
Repetto, P. ;
Leccardi, M. ;
Vinati, S. ;
Milani, P. .
NEW JOURNAL OF PHYSICS, 2010, 12