Improved remote sensing reference evapotranspiration estimation using simple satellite data and machine learning

被引:4
作者
Liu, Dan [1 ]
Wang, Zhongjing [1 ,2 ]
Wang, Lei [3 ,4 ]
Chen, Jibin [1 ]
Li, Congcong [1 ]
Shi, Yujia [1 ]
机构
[1] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China
[2] Ningxia Univ, Sch Civil & Hydraul Engn, Yinchuan 750021, Peoples R China
[3] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Resources, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Reference evapotranspiration; Remote sensing; Machine learning; High resolution; Large scale; MODELS; SVM; REGRESSION;
D O I
10.1016/j.scitotenv.2024.174480
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reference evapotranspiration (ET0) estimation is crucial for efficient irrigation planning, optimized water management and ecosystem modeling, yet it presents significant challenges, particularly when meteorological data availability is limited. This study utilized remote sensing data of land surface temperature (LST), day of year, and latitude, and employed a machine learning approach (i.e., random forest) to develop an improved remote sensing ET0 model. The model performed excellently in 567 meteorological stations in China with an R2 of 0.97, RMSE of 0.40, MBE of 0.00, and MAPE of 0.11 compared to the FAO-PM ET0; it also performed well globally, yielding an average R2 of 0.97 and RMSE of 0.43 across 120 sites in mid-latitude (20 degrees-50 degrees) regions. This model demonstrates simplicity, accuracy, robust and generalization, holding great potential for widespread application, especially in the large-scale, high-resolution estimation of ET0. This study will contribute to advancements in water resources management, agricultural planning, and climate change studies
引用
收藏
页数:15
相关论文
共 54 条
[1]   Exploring the Applicability of Regression Models and Artificial Neural Networks for Calculating Reference Evapotranspiration in Arid Regions [J].
Abdel-Fattah, Mohamed K. ;
Abd-Elmabod, Sameh Kotb ;
Zhang, Zhenhua ;
Merwad, Abdel-Rhman M. A. .
SUSTAINABILITY, 2023, 15 (21)
[2]   Assessing the physical and empirical reference evapotranspiration (ETo) models and time series analyses of the influencing weather variables on ETo in a semi-arid area [J].
Ahmadi, Seyed Hamid ;
Javanbakht, Zahra .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 276
[3]   A review of recent advances and future prospects in calculation of reference evapotranspiration in Bangladesh using soft computing models [J].
Alam, Md Mahfuz ;
Akter, Mst. Yeasmin ;
Islam, Abu Reza Md Towfiqul ;
Mallick, Javed ;
Kabir, Zobaidul ;
Chu, Ronghao ;
Arabameri, Alireza ;
Pal, Subodh Chandra ;
Masud, Md Abdullah Al ;
Costache, Romulus ;
Senapathi, Venkatramanan .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 351
[4]  
Allen R. G., 1998, FAO Irrigation and Drainage Paper
[5]   ETo-Brazil: A Daily Gridded Reference Evapotranspiration Data Set for Brazil (2000-2018) [J].
Althoff, Daniel ;
Brant Dias, Santos Henrique ;
Filgueiras, Roberto ;
Rodrigues, Lineu Neiva .
WATER RESOURCES RESEARCH, 2020, 56 (07)
[6]   Random forest for spatialization of daily evapotranspiration (ET0) in watersheds in the Atlantic Forest [J].
Baratto, Pablo Francisco Benitez ;
Cecilio, Roberto Avelino ;
de Sousa Teixeira, David Bruno ;
Zanetti, Sidney Sara ;
Xavier, Alexandre Candido .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2022, 194 (06)
[7]   Reference evapotranspiration projections in Southern Spain (until 2100) using temperature-based machine learning models [J].
Bellido-Jimenez, J. A. ;
Estevez, J. ;
Garcia-Marin, A. P. .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 214
[8]   Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? [J].
Binh Thai Pham ;
Chinh Luu ;
Tran Van Phong ;
Phan Trong Trinh ;
Shirzadi, Ataollah ;
Renoud, Somayeh ;
Asadi, Shahrokh ;
Hiep Van Le ;
von Meding, Jason ;
Clague, John J. .
JOURNAL OF HYDROLOGY, 2021, 592
[9]   An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States [J].
Blankenau, Philip A. ;
Kilic, Ayse ;
Allen, Richard .
AGRICULTURAL WATER MANAGEMENT, 2020, 242
[10]   Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China [J].
Dong, Juan ;
Xing, Liwen ;
Cui, Ningbo ;
Zhao, Lu ;
Guo, Li ;
Wang, Zhihui ;
Du, Taisheng ;
Tan, Mingdong ;
Gong, Daozhi .
AGRICULTURAL WATER MANAGEMENT, 2024, 292