Applications of artificial intelligence in prostate cancer histopathology

被引:6
作者
Busby, Dallin [1 ]
Grauer, Ralph [1 ]
Pandav, Krunal [1 ]
Khosla, Akshita [2 ]
Jain, Parag [3 ]
Menon, Mani [1 ]
Haines III, G. Kenneth [1 ]
Cordon-Cardo, Carlos [4 ]
Gorin, Michael A. [1 ]
Tewari, Ashutosh K. [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Urol, New York, NY 10029 USA
[2] Crozer Chester Med Ctr, Dept Internal Med, Philadelphia, PA USA
[3] PathomIQ Inc, Cupertino, CA USA
[4] Icahn Sch Med Mt Sinai, Dept Pathol, New York, NY USA
关键词
Prostate cancer; Histopathology; Artificial intelligence; Machine learning; Deep learning; Gleason grading; WHOLE-SLIDE IMAGES; BIOPSIES; PREDICTION; RECURRENCE; DIAGNOSIS;
D O I
10.1016/j.urolonc.2022.12.002
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The diagnosis of prostate cancer (PCa) depends on the evaluation of core needle biopsies by trained pathologists. Artificial intelligence (AI) derived models have been created to address the challenges posed by pathologists' increasing workload, workforce shortages, and variability in histopathology assessment. These models with histopathological parameters integrated into sophisticated neural networks demonstrate remarkable ability to identify, grade, and predict outcomes for PCa. Though the fully autonomous diagnosis of PCa remains elusive, recently published data suggests that AI has begun to serve as an initial screening tool, an assistant in the form of a real -time interactive interface during histological analysis, and as a second read system to detect false negative diagnoses. Our article aims to describe recent advances and future opportunities for AI in PCa histopathology. (c) 2022 Published by Elsevier Inc.
引用
收藏
页码:37 / 47
页数:11
相关论文
共 57 条
[1]   Digital pathology: current status and future perspectives [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Van Diest, Paul J. .
HISTOPATHOLOGY, 2012, 61 (01) :1-9
[2]   Automated detection of cribriform growth patterns in prostate histology images [J].
Ambrosini, Pierre ;
Hollemans, Eva ;
Kweldam, Charlotte F. ;
van Leenders, Geert J. L. H. ;
Stallinga, Sjoerd ;
Vos, Frans .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[4]   Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge [J].
Bulten, Wouter ;
Kartasalo, Kimmo ;
Chen, Po-Hsuan Cameron ;
Strom, Peter ;
Pinckaers, Hans ;
Nagpal, Kunal ;
Cai, Yuannan ;
Steiner, David F. ;
van Boven, Hester ;
Vink, Robert ;
Hulsbergen-van de Kaa, Christina ;
van der Laak, Jeroen ;
Amin, Mahul B. ;
Evans, Andrew J. ;
van der Kwast, Theodorus ;
Allan, Robert ;
Humphrey, Peter A. ;
Gronberg, Henrik ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Tsuzuki, Toyonori ;
Hakkinen, Tomi ;
Egevad, Lars ;
Demkin, Maggie ;
Dane, Sohier ;
Tan, Fraser ;
Valkonen, Masi ;
Corrado, Greg S. ;
Peng, Lily ;
Mermel, Craig H. ;
Ruusuvuori, Pekka ;
Litjens, Geert ;
Eklund, Martin .
NATURE MEDICINE, 2022, 28 (01) :154-+
[5]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]   Artificial intelligence and neural networks in urology: current clinical applications [J].
Checcucci, Enrico ;
Autorino, Riccardo ;
Cacciamani, Giovanni E. ;
Amparore, Daniele ;
De Cillis, Sabrina ;
Piana, Alberto ;
Piazzolla, Pietro ;
Vezzetti, Enrico ;
Fiori, Cristian ;
Veneziano, Domenico ;
Tewari, Ash ;
Dasgupta, Prokar ;
Hung, Andrew ;
Gill, Inderbir ;
Porpiglia, Francesco .
MINERVA UROLOGICA E NEFROLOGICA, 2020, 72 (01) :49-57
[8]  
Commissioner O of the, 2021, FDA Authorizes Software that Can Help Identify Prostate Cancer
[9]   Improved prediction of prostate cancer recurrence through systems pathology [J].
Cordon-Cardo, Carlos ;
Kotsianti, Angeliki ;
Verbel, David A. ;
Teverovskiy, Mikhail ;
Capodieci, Paola ;
Hamann, Stefan ;
Jeffers, Yusuf ;
Clayton, Mark ;
Elkhettabi, Faysal ;
Khan, Faisal M. ;
Sapir, Marina ;
Bayer-Zubek, Valentina ;
Vengrenyuk, Yevgen ;
Fogarsi, Stephen ;
Saidi, Olivier ;
Reuter, Victor E. ;
Scher, Howard I. ;
Kattan, Michael W. ;
Bianco, Fernando J., Jr. ;
Wheeler, Thomas M. ;
Ayala, Gustavo E. ;
Scardino, Peter T. ;
Donovan, Michael J. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (07) :1876-1883
[10]   Independent real-world application of a clinical-grade automated prostate cancer detection system [J].
da Silva, Leonard M. ;
Pereira, Emilio M. ;
Salles, Paulo G. O. ;
Godrich, Ran ;
Ceballos, Rodrigo ;
Kunz, Jeremy D. ;
Casson, Adam ;
Viret, Julian ;
Chandarlapaty, Sarat ;
Ferreira, Carlos Gil ;
Ferrari, Bruno ;
Rothrock, Brandon ;
Raciti, Patricia ;
Reuter, Victor ;
Dogdas, Belma ;
DeMuth, George ;
Sue, Jillian ;
Kanan, Christopher ;
Grady, Leo ;
Fuchs, Thomas J. ;
Reis-Filho, Jorge S. .
JOURNAL OF PATHOLOGY, 2021, 254 (02) :147-158