A NUMERICAL STUDY ON THE POWDER FLOWABILITY, SPREADABILITY, PACKING FRACTION IN POWDER BED ADDITIVE MANUFACTURING

被引:0
|
作者
Akib, Yeasir Mohammad [1 ]
Marzbanrad, Ehsan [2 ]
Ahmed, Farid [1 ]
Li, Jianzhi [1 ]
机构
[1] Univ Texas Rio Grande Valley, Dept Mfg & Ind Engn, Edinburg, TX 78539 USA
[2] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON N2L 3W8, Canada
来源
PROCEEDINGS OF ASME 2022 17TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, MSEC2022, VOL 1 | 2022年
关键词
Powder Bed Fusion (PBF); Powder Flowability; Spreadability; Packing Fraction; Molecular Dynamics ( MD) Simulation; SPREADING PROCESS; FLOW BEHAVIOR; SIMULATION; PHYSICS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The powder bed fusion (PBF) process is widely adopted in many manufacturing industries because of its capability to 3D print complex parts with micro-scale precision. In PBF process, a thermal energy source is used to selectively fuse powder particles layer by layer to build a part. The build quality in the PBF process primarily depends on the thermal energy deposition and properties of the powder bed. Powder flowability, powder spreading, and packing fraction are key factors that determine the properties of a powder bed. Therefore, the study of these process parameters is essential to better understand the PBF process. In our study, we developed a two-dimensional powder bed model using the granular package of the LAMMPS molecular dynamics simulator. Cloud-based deposition was adopted for pouring powder particles on the powder bed. The spreading of particles over the substrate was mimicked like a powder bed system. The powder flowability in the proposed study was analyzed by varying the particle size distribution. The simulation results showed that a greater number of larger particles in a power sample results in an increase in the Angle of Repose (AOR) which ultimately affects the flowability. Two different kinds of recoater geometry were considered in this study: circular and rectangular blades. Simulation results showed that depending on the recoater shape there is a change in the packing fraction in the powder bed. Cross-sectional analysis of the power bed showed a significant presence of voids when a greater number of larger particles existed in the powder batch. The packing fraction of the powder bed was found to be a strong function of particle size distribution. These analyses help understand the influence of particle size and recoater shape on the powder bed properties. Findings from this study help to provide a guideline for choosing particle size distribution if the spherical particles are considered. While the present study focuses on the spherical powder particles, the proposed system can also be adapted to the study of powder bed with aspherical particles.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing
    Tan, Pengfei
    Shen, Fei
    Tey, Wei Shian
    Zhou, Kun
    VIRTUAL AND PHYSICAL PROTOTYPING, 2021, 16 (S1) : S1 - S18
  • [2] On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing
    Snow, Zackary
    Martukanitz, Richard
    Joshi, Sanjay
    ADDITIVE MANUFACTURING, 2019, 28 : 78 - 86
  • [3] Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing
    Spierings A.B.
    Voegtlin M.
    Bauer T.
    Wegener K.
    Progress in Additive Manufacturing, 2016, 1 (1-2) : 9 - 20
  • [4] Influences of Powder Packing Density in Laser Powder Bed Fusion Metal Additive Manufacturing
    Zhang Peng
    Zhang Shaoming
    Bi Zhongnan
    Tan Zhen
    Wang Rui
    Wang Rui
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (05)
  • [5] A simple method for assessing powder spreadability for additive manufacturing
    Ahmed, Moustafa
    Pasha, Mehrdad
    Nan, Wenguang
    Ghadiri, Mojtaba
    POWDER TECHNOLOGY, 2020, 367 (367) : 671 - 679
  • [6] An investigation of the effect of powder flowability on the powder spreading in additive manufacturing
    Mehrabi, Mozhdeh
    Gardy, Jabbar
    Talebi, Fatemeh A.
    Farshchi, Amin
    Hassanpour, Ali
    Bayly, Andrew E.
    POWDER TECHNOLOGY, 2023, 413
  • [7] Powder spreading and spreadability in powder-based additive manufacturing: State of the art and perspectives
    Nan, Wenguang
    Ge, Lanzhou
    He, Ziming
    Sun, Zhonggang
    Lu, Jinzhong
    POWDER TECHNOLOGY, 2025, 449
  • [8] Effect of Temperature on Aluminium Powder Flowability and Spreadability
    Mehrabi, Mozhdeh
    Talebi, Fatemeh Ali Akbar
    Berry, Nathan
    Khajepor, Sorush
    Haeri, Sina
    Gardy, Jabbar
    Oluleke, Joseph
    Bayly, Andrew
    Hassanpour, Ali
    KONA POWDER AND PARTICLE JOURNAL, 2024,
  • [9] Comprehensive evaluation of powder flowability for additive manufacturing using principal component analysis
    Tan, Yuanqiang
    Zhang, Jiangtao
    Li, Xiang
    Xu, Yangli
    Wu, Chuan-Yu
    POWDER TECHNOLOGY, 2021, 393 : 154 - 164
  • [10] Powder flowability characterisation at preheating temperature in additive manufacturing
    Zhang, Jiangtao
    Liu, Peng
    POWDER METALLURGY, 2023, 66 (05) : 427 - 435