A framework for simultaneous aerodynamic design optimization in the presence of chaos

被引:6
作者
Guenther, Stefanie [1 ]
Gauger, Nicolas R. [1 ]
Wang, Qiqi [2 ]
机构
[1] TU Kaiserslautern, Chair Sci Comp, Paul Ehrlich Str 34, D-67663 Kaiserslautern, Germany
[2] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Simultaneous optimization; One-shot; Unsteady flow; Dual time-stepping; Chaos; Least squares shadowing; PDE-CONSTRAINED OPTIMIZATION; LARGE-EDDY SIMULATION; KRYLOV-SCHUR METHODS; CIRCULAR-CYLINDER; VORTEX DYNAMICS; WAKE; TRANSITION; TURBULENCE; FLOWS; MODEL;
D O I
10.1016/j.jcp.2016.10.043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Integrating existing solvers for unsteady partial differential equations into a simultaneous optimization method is challenging due to the forward-in-time information propagation of classical time-stepping methods. This paper applies the simultaneous single-step one-shot optimization method to a reformulated unsteady constraint that allows for both forward and backward-in-time information propagation. Especially in the presence of chaotic and turbulent flow, solving the initial value problem simultaneously with the optimization problem often scales poorly with the time domain length. The new formulation relaxes the initial condition and instead solves a least squares problem for the discrete partial differential equations. This enables efficient one-shot optimization that is independent of the time domain length, even in the presence of chaos. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 53 条
  • [1] Nested multigrid methods for time-periodic, parabolic optimal control problems
    Abbeloos, Dirk
    Diehl, Moritz
    Hinze, Michael
    Vandewalle, Stefan
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 27 - 38
  • [2] Parallel algorithms for PDE-constrained optimization
    Akcelik, Volkan
    Biros, George
    Ghattas, Omar
    Hill, Judith
    Keyes, David
    Waanders, Bart van Bloemen
    [J]. PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 291 - 322
  • [3] Alter S.J., 2015, 33 AIAA APPL AER C, P3149
  • [4] [Anonymous], 1991, P 10 COMP FLUID DYN
  • [5] [Anonymous], 2015, CODIPACK CODE DIFFER
  • [6] Biegler L.T., 2003, Large-Scale PDE-Constrained Optimization, V30
  • [7] Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver
    Biros, G
    Ghattas, O
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) : 687 - 713
  • [8] Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part II: The Lagrange-Newton solver and its application to optimal control of steady viscous flows
    Biros, G
    Ghattas, O
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) : 714 - 739
  • [9] Blonigan P., 2014, NUMER LINEAR ALGEBRA, V21
  • [10] Bosse T., 2014, INT SER NUMER MATH, V165, P67