STAR-CRITICAL RAMSEY NUMBERS AND REGULAR RAMSEY NUMBERS FOR STARS

被引:0
作者
Luo, Zhidan [1 ]
机构
[1] Hainan Univ, Sch Math & Stat, Haikou 570228, Hainan, Peoples R China
关键词
star-critical Ramsey numbers; regular Ramsey numbers; stars;
D O I
10.7151/dmgt.2550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph, H be a subgraph of G, and let G - H be the graph obtained from G by removing a copy of H. Let K-1,K- n be the star on n + 1 vertices. Let t >= 2 be an integer and H-1, ..., H-t and H be graphs, and let H -> (H-1, ..., H-t) denote that every t coloring of E(H) yields a monochromatic copy of H-i in color i for some i is an element of[t]. The Ramsey number r(H-1, ..., H-t) is the minimum integer N such that K-N -> (H-1, ..., H-t). The star-critical Ramsey number r(*)(H-1, ..., H-t) is the minimum integer k such that K-N - K-1,K- N-1-k -> (H-1, ..., H-t) where N = r(H-1, ..., H-t). Let rr(H-1, ..., H-t) be the regular Ramsey number for H-1, ..., H-t, which is the minimum integer r such that if G is an r-regular graph on r(H-1, ..., H-t) vertices, then G -> (H-1, ..., H-t). Let m(1), ..., m(t) be integers larger than one, exactly k of which are even. In this paper, we prove that if k >= 2 is even, then r(*)(K-1,K- m1, ..., K-1,K- mt) = Sigma(t)(i=1) m(i) - t + 1/2 which disproves a conjecture of Budden and DeJonge in 2022. Furthermore, we prove that rr(K-1,K- m1, ..., K-1,K- mt) = {Sigma(t)(i=1) m(i) - t, k >= 2 is even, Sigma(t)(i=1) m(i) - t + 1, otherwise.
引用
收藏
页码:755 / 762
页数:8
相关论文
共 8 条
[1]  
[Anonymous], 1978, LONDON MATH SOC MONO
[2]   Multicolor star-critical Ramsey numbers and Ramsey-good graphs [J].
Budden, Mark Rowland ;
DeJonge, Elijah .
ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) :51-66
[3]  
Burr S.A., 1973, Util. Math, V4, P217
[4]  
Harary F., 1972, GRAPH THEORY APPL, P125
[5]  
Harary F., 1969, GRAPH THEORY
[6]   Star-critical Ramsey numbers [J].
Hook, Jonelle ;
Isaak, Garth .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (05) :328-334
[7]  
Lucas E., 1892, RECREATIONS MATH, V2
[8]   Some Ramsey-Turan type problems and related questions [J].
Schelp, R. H. .
DISCRETE MATHEMATICS, 2012, 312 (14) :2158-2161