Autofluorescence lifetime flow cytometry with time-correlated single photon counting

被引:3
作者
Samimi, Kayvan [1 ]
Pasachhe, Ojaswi [1 ]
Guzman, Emmanuel Contreras [1 ]
Riendeau, Jeremiah [1 ]
Gillette, Amani A. [1 ]
Pham, Dan L. [2 ]
Wiech, Kasia J. [2 ]
Moore, Darcie L. [3 ]
Skala, Melissa C. [1 ,2 ]
机构
[1] Morgridge Inst Res, Madison, WI 53715 USA
[2] Univ Wisconsin, Dept Biomed Engn, Madison, WI USA
[3] Univ Wisconsin, Dept Neurosci, Madison, WI 53705 USA
基金
美国国家卫生研究院;
关键词
flow cytometry; fluorescence lifetime; label-free sensing; metabolism; NAD(P)H; single-cell analysis; time tagger; FLUORESCENCE-LIFETIME; MICROSCOPY; NADH; QUIESCENCE; NAD(P)H; CELLS;
D O I
10.1002/cyto.a.24883
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Autofluorescence lifetime imaging microscopy (FLIM) is sensitive to metabolic changes in single cells based on changes in the protein-binding activities of the metabolic co-enzymes NAD(P)H. However, FLIM typically relies on time-correlated single-photon counting (TCSPC) detection electronics on laser-scanning microscopes, which are expensive, low-throughput, and require substantial post-processing time for cell segmentation and analysis. Here, we present a fluorescence lifetime-sensitive flow cytometer that offers the same TCSPC temporal resolution in a flow geometry, with low-cost single-photon excitation sources, a throughput of tens of cells per second, and real-time single-cell analysis. The system uses a 375 nm picosecond-pulsed diode laser operating at 50 MHz, alkali photomultiplier tubes, an FPGA-based time tagger, and can provide real-time phasor-based classification (i.e., gating) of flowing cells. A CMOS camera produces simultaneous brightfield images using far-red illumination. A second PMT provides two-color analysis. Cells are injected into the microfluidic channel using a syringe pump at 2-5 mm/s with nearly 5 ms integration time per cell, resulting in a light dose of 2.65 J/cm2 that is well below damage thresholds (25 J/cm2 at 375 nm). Our results show that cells remain viable after measurement, and the system is sensitive to autofluorescence lifetime changes in Jurkat T cells with metabolic perturbation (sodium cyanide), quiescent versus activated (CD3/CD28/CD2) primary human T cells, and quiescent versus activated primary adult mouse neural stem cells, consistent with prior studies using multiphoton FLIM. This TCSPC-based autofluorescence lifetime flow cytometer provides a valuable label-free method for real-time analysis of single-cell function and metabolism with higher throughput than laser-scanning microscopy systems.
引用
收藏
页码:607 / 620
页数:14
相关论文
共 50 条
[21]   Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry [J].
Alturkistany, Faisal ;
Nichani, Kapil ;
Houston, Kevin D. ;
Houston, Jessica P. .
CYTOMETRY PART A, 2019, 95A (01) :70-79
[22]   Super-Resolved Fluorescence Lifetime Imaging of Single Cy3 Molecules and Quantum Dots Using Time-Correlated Single Photon Counting with a Four-Pixel Fiber Optic Array Camera [J].
Koch, Liam A. ;
Dunlap, Megan K. ;
Ryan, Duncan P. ;
Werner, James H. ;
Goodwin, Peter M. ;
Green, Christopher M. ;
Diaz, SebastianA. ;
Medintz, Igor L. ;
Susumu, Kimihiro ;
Stewart, Michael H. ;
Gelfand, Martin P. ;
Van Orden, Alan .
JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 129 (01) :3-13
[23]   Autofluorescence lifetime flow cytometry rapidly flows from strength to strength [J].
Suhling, Klaus .
CYTOMETRY PART A, 2025, 107 (01) :5-8
[24]   Time-Correlated Single Photon Counting For Simultaneous Monitoring Of Zinc Oxide Nanoparticles And NAD(P)H In Intact And Barrier-Disrupted Volunteer Skin [J].
Lin, Lynlee L. ;
Grice, Jeffrey E. ;
Butler, Margaret K. ;
Zvyagin, Andrei V. ;
Becker, Wolfgang ;
Robertson, Thomas A. ;
Soyer, H. Peter ;
Roberts, Michael S. ;
Prow, Tarl W. .
PHARMACEUTICAL RESEARCH, 2011, 28 (11) :2920-2930
[25]   Time-Correlated Single Photon Counting For Simultaneous Monitoring Of Zinc Oxide Nanoparticles And NAD(P)H In Intact And Barrier-Disrupted Volunteer Skin [J].
Lynlee L. Lin ;
Jeffrey E. Grice ;
Margaret K. Butler ;
Andrei V. Zvyagin ;
Wolfgang Becker ;
Thomas A. Robertson ;
H. Peter Soyer ;
Michael S. Roberts ;
Tarl W. Prow .
Pharmaceutical Research, 2011, 28 :2920-2930
[26]   Single photon counting fluorescence lifetime detection of pericellular oxygen concentrations [J].
Hosny, Neveen A. ;
Lee, David A. ;
Knight, Martin M. .
JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (01)
[27]   Highly efficient router-based readout algorithm for Single-Photon Avalanche-Diode imagers for time-correlated experiments [J].
Cominelli, A. ;
Acconcia, G. ;
Caldi, F. ;
Peronio, P. ;
Ghioni, M. ;
Rech, I. .
PHOTONIC INSTRUMENTATION ENGINEERING V, 2018, 10539
[28]   DNA Origami Calibrators for Counting Fluorophores on Single Particles by Flow Cytometry [J].
Selnihhin, Denis ;
Mortensen, Kim, I ;
Larsen, Jannik B. ;
Simonsen, Jens B. ;
Pedersen, Finn Skou .
SMALL METHODS, 2022, 6 (03)
[29]   Light-sheet autofluorescence lifetime imaging with a single-photon avalanche diode array [J].
Samimi, Kayvan ;
Desa, Danielle E. ;
Lin, Wei ;
Weiss, Kurt ;
Li, Joe ;
Huisken, Jan ;
Miskolci, Veronika ;
Huttenlocher, Anna ;
Chacko, Jenu V. ;
Velten, Andreas ;
Rogers, Jeremy D. ;
Eliceiri, Kevin W. ;
Skala, Melissa C. .
JOURNAL OF BIOMEDICAL OPTICS, 2023, 28 (06)
[30]   Time-Domain Microfluidic Fluorescence Lifetime Flow Cytometry for High-Throughput Forster Resonance Energy Transfer Screening [J].
Nedbal, Jakub ;
Visitkul, Viput ;
Ortiz-Zapater, Elena ;
Weitsman, Gregory ;
Chana, Prabhjoat ;
Matthews, Daniel R. ;
Ng, Tony ;
Ameer-Beg, Simon M. .
CYTOMETRY PART A, 2015, 87A (02) :104-118