Chaos of Induced Set-Valued Dynamical Systems on Uniform Spaces

被引:0
作者
Shao, Hua [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
关键词
Nonautonomous set-valued dynamcial system; Uniform space; Chaos; Shadowing property; Chain mixing; TOPOLOGICAL-ENTROPY; ORBITS;
D O I
10.1007/s10884-024-10374-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\mathcal {U})$$\end{document} be a Hausdorff uniform space and f0,infinity={fn}n=0 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{0,\infty }=\{f_n\}_{n=0}<^>{\infty }$$\end{document} be a sequence of uniformly continuous self-maps on X. The nonautonomous dynamical system (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} induces the set-valued dynamical system (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} on the hyperspace K(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(X)$$\end{document} consisting of all the nonempty compact subsets of X. In this paper, we mainly investigate the connections between some dynamical properties of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and those of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}. We prove that chain mixing, shadowing property, h-shadowing property, specification property and multi-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document}-sensitivity of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} is equivalent to that of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}, respectively. In particular, we show that chain mixing of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and topological mixing of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} are equivalent provided that (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} has shadowing property. We obtain that positive topological entropy of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} implies infinite entropy of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} and confirm that topological equi-conjugacy between two dynamical systems is preserved by their induced set-valued systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] CHAOS IN NONAUTONOMOUS DISCRETE DYNAMICAL SYSTEMS APPROACHED BY THEIR INDUCED SYSTEMS
    Shi, Yuming
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (11):
  • [42] Weak forms of shadowing and stability for set-valued maps
    Khan, Abdul Gaffar
    Kumar, Ramesh
    Das, Tarun
    TOPOLOGY AND ITS APPLICATIONS, 2025, 361
  • [43] Decidability of Chaos for Some Families of Dynamical Systems
    Alexander Arbieto
    Carlos Matheus
    Foundations of Computational Mathematics, 2004, 4 : 269 - 275
  • [44] Chaos in nonautonomous discrete fuzzy dynamical systems
    Lan, Yaoyao
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (02): : 404 - 412
  • [45] Decidability of chaos for some families of dynamical systems
    Arbieto, A
    Matheus, C
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2004, 4 (03) : 269 - 275
  • [46] PERSISTENCE AND CW-TOPOLOGICAL STABILITY FOR SET-VALUED MAPS
    Kumar, Ramesh
    Khan, Abdul gaffar
    Das, Tarun
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (02): : 369 - 380
  • [47] THE SPECIFICATION PROPERTY ON A SET-VALUED MAP AND ITS INVERSE LIMIT
    Raines, Brian E.
    Tennant, Tim
    HOUSTON JOURNAL OF MATHEMATICS, 2018, 44 (02): : 665 - 677
  • [48] CHAOS IN NONAUTONOMOUS DYNAMICAL SYSTEMS
    Oprocha, Piotr
    Wilczynski, Pawel
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (03): : 209 - 221
  • [49] A note on the uniform limit of transitive dynamical systems
    Fedeli, Alessandro
    Le Donne, Attilio
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (01) : 59 - 66
  • [50] Induced hyperspace dynamical systems of symbolic dynamical systems
    Li, Zhiming
    Wang, Minghan
    Wei, Guo
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2018, 47 (08) : 809 - 820