Chaos of Induced Set-Valued Dynamical Systems on Uniform Spaces

被引:0
作者
Shao, Hua [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, MIIT, Key Lab Math Modelling & High Performance Comp Air, Nanjing 211106, Peoples R China
关键词
Nonautonomous set-valued dynamcial system; Uniform space; Chaos; Shadowing property; Chain mixing; TOPOLOGICAL-ENTROPY; ORBITS;
D O I
10.1007/s10884-024-10374-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X,U)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\mathcal {U})$$\end{document} be a Hausdorff uniform space and f0,infinity={fn}n=0 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{0,\infty }=\{f_n\}_{n=0}<^>{\infty }$$\end{document} be a sequence of uniformly continuous self-maps on X. The nonautonomous dynamical system (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} induces the set-valued dynamical system (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} on the hyperspace K(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(X)$$\end{document} consisting of all the nonempty compact subsets of X. In this paper, we mainly investigate the connections between some dynamical properties of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and those of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}. We prove that chain mixing, shadowing property, h-shadowing property, specification property and multi-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {F}$$\end{document}-sensitivity of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} is equivalent to that of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document}, respectively. In particular, we show that chain mixing of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} and topological mixing of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} are equivalent provided that (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} has shadowing property. We obtain that positive topological entropy of (X,f0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,f_{0,\infty })$$\end{document} implies infinite entropy of (K(X),f<overline>0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {K}(X),\bar{f}_{0,\infty })$$\end{document} and confirm that topological equi-conjugacy between two dynamical systems is preserved by their induced set-valued systems.
引用
收藏
页数:17
相关论文
共 26 条
[1]   Devaney's and Li-Yorke's Chaos in Uniform Spaces [J].
Arai, Tatsuya .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2018, 24 (01) :93-100
[2]   Weak mixing and chaos in nonautonomous discrete systems [J].
Balibrea, Francisco ;
Oprocha, Piotr .
APPLIED MATHEMATICS LETTERS, 2012, 25 (08) :1135-1141
[3]   Chaos for induced hyperspace maps [J].
Banks, J .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :681-685
[4]   TOPOLOGICAL DYNAMICS OF TRANSFORMATIONS INDUCED ON SPACE OF PROBABILITY MEASURES [J].
BAUER, W ;
SIGMUND, K .
MONATSHEFTE FUR MATHEMATIK, 1975, 79 (02) :81-92
[5]   Sensitivity and devaney's chaos in uniform spaces [J].
Ceccherini-Silberstein, Tullio ;
Coornaert, Michel .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (03) :349-357
[6]   ON SPECIFICATION AND MEASURE EXPANSIVENESS [J].
Cordeiro, Welington ;
Denker, Manfred ;
Zhang, Xuan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) :1941-1957
[7]   Global stability of periodic orbits of non-autonomous difference equations and population biology [J].
Elaydi, S ;
Sacker, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 208 (01) :258-273
[8]   Chaos on hyperspaces [J].
Garcia Guirao, Juan Luis ;
Kwietniak, Dominik ;
Lampart, Marek ;
Oprocha, Piotr ;
Peris, Alfredo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :1-8
[9]   WHAT IS TOPOLOGICAL ABOUT TOPOLOGICAL DYNAMICS? [J].
Good, Chris ;
Macias, Sergio .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (03) :1007-1031
[10]   On mixing property in set-valued discrete systems [J].
Gu, RB ;
Guo, WJ .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :747-754