Quantitative Phase Contrast Microscopy Based on Convolutional Neural Networks (Invited)

被引:1
作者
Gao Peng [1 ,2 ,3 ]
Wang Wenjian [1 ,2 ,3 ]
Zhuo Kequn [1 ,2 ,3 ]
Liu Xin [1 ,2 ,3 ]
Feng Wenjing [1 ,2 ,3 ]
Ma Ying [1 ,2 ,3 ]
An Sha [1 ,2 ,3 ]
Zheng Juanjuan [1 ,2 ,3 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710171, Shaanxi, Peoples R China
[2] Minist Educ, Key Lab Optoelect Percept Complex Environm, Xian 710171, Shaanxi, Peoples R China
[3] Shaanxi Engn Res Ctr Funct Nanomat, Xian 710171, Shaanxi, Peoples R China
关键词
quantitative phase imaging; partially coherent illumination; deep learning; convolutional neural network; STIMULATED-EMISSION; RESOLUTION; LIMIT; NET;
D O I
10.3788/LOP232315
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantitative phase contrast microscopy facilitates high-contrast and quantitative phase imaging of transparent samples, eliminating the need for fluorescent labeling, making it pivotal for observing dynamic processes in living cells. Traditional methods, however, require three phase-shifted interferograms to generate a quantitative phase image, resulting in time-intensive procedures. This study introduces a novel phase reconstruction approach for quantitative phase contrast microscopy, leveraging a two-channel convolutional neural network. This innovative method achieves quantitative phase image retrieval from only two phase-shifted interferograms, enhancing imaging speed by 1.5 times and reconstruction speed by an order of magnitude compared with traditional approaches. In our experimental setup, the network was trained using COS7 cell data. The trained network successfully reconstructed quantitative phase images of 3T3 cells, demonstrating its applicability for accurate and robust phase reconstruction across different cell types. This method holds promise as a powerful tool for real-time, high-resolution observation of dynamic living cells and the interaction networks of sub-cellular organelles.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Multicolor super-resolution imaging with photo-switchable fluorescent probes [J].
Bates, Mark ;
Huang, Bo ;
Dempsey, Graham T. ;
Zhuang, Xiaowei .
SCIENCE, 2007, 317 (5845) :1749-1753
[2]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[3]   Deep Learning in Label-free Cell Classification [J].
Chen, Claire Lifan ;
Mahjoubfar, Ata ;
Tai, Li-Chia ;
Blaby, Ian K. ;
Huang, Allen ;
Niazi, Kayvan Reza ;
Jalali, Bahram .
SCIENTIFIC REPORTS, 2016, 6
[4]   PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells [J].
Dardikman-Yoffe, Gili ;
Roitshtain, Darina ;
Mirsky, Simcha K. ;
Turko, Nir A. ;
Habaza, Mor ;
Shaked, Natan T. .
BIOMEDICAL OPTICS EXPRESS, 2020, 11 (02) :1107-1121
[5]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[6]   Resolution enhancement of digital holographic microscopy via synthetic aperture: a review [J].
Gao, Peng ;
Yuan, Caojin .
LIGHT-ADVANCED MANUFACTURING, 2022, 3 (01) :105-120
[7]  
Gao P, 2017, NAT PHOTONICS, V11, P163, DOI [10.1038/nphoton.2016.279, 10.1038/NPHOTON.2016.279]
[8]  
Hassaan M, 2017, Journal of Biophotonics, V10, P177
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782