Disentangling the effects of sulfate and other seawater ions on microbial communities and greenhouse gas emissions in a coastal forested wetland

被引:4
作者
Mesquita, Clifton P. Bueno de [1 ]
Hartman, Wyatt H. [1 ]
Ardon, Marcelo [2 ]
Tringe, Susannah G. [1 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Dept Energy, Joint Genome Inst, Berkeley, CA 94720 USA
[2] North Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA
[3] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA
来源
ISME COMMUNICATIONS | 2024年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
soil microbes; wetlands; seawater intrusion; sulfate; methane; OUT-COMPETE METHANOGENS; SALTWATER INTRUSION; SP NOV; REDUCING BACTERIA; ORGANIC-MATTER; WATER; SALINITY; DIVERSITY; REDUCERS; ATHALASSOHALINE;
D O I
10.1093/ismeco/ycae040
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Seawater intrusion into freshwater wetlands causes changes in microbial communities and biogeochemistry, but the exact mechanisms driving these changes remain unclear. Here we use a manipulative laboratory microcosm experiment, combined with DNA sequencing and biogeochemical measurements, to tease apart the effects of sulfate from other seawater ions. We examined changes in microbial taxonomy and function as well as emissions of carbon dioxide, methane, and nitrous oxide in response to changes in ion concentrations. Greenhouse gas emissions and microbial richness and composition were altered by artificial seawater regardless of whether sulfate was present, whereas sulfate alone did not alter emissions or communities. Surprisingly, addition of sulfate alone did not lead to increases in the abundance of sulfate reducing bacteria or sulfur cycling genes. Similarly, genes involved in carbon, nitrogen, and phosphorus cycling responded more strongly to artificial seawater than to sulfate. These results suggest that other ions present in seawater, not sulfate, drive ecological and biogeochemical responses to seawater intrusion and may be drivers of increased methane emissions in soils that received artificial seawater addition. A better understanding of how the different components of salt water alter microbial community composition and function is necessary to forecast the consequences of coastal wetland salinization.
引用
收藏
页数:14
相关论文
共 107 条
[1]   COMPETITION FOR ELECTRON-DONORS AMONG NITRATE REDUCERS, FERRIC IRON REDUCERS, SULFATE REDUCERS, AND METHANOGENS IN ANOXIC PADDY SOIL [J].
ACHTNICH, C ;
BAK, F ;
CONRAD, R .
BIOLOGY AND FERTILITY OF SOILS, 1995, 19 (01) :65-72
[2]   A synthesis of methane emissions from shallow vegetated coastal ecosystems [J].
Al-Haj, Alia N. ;
Fulweiler, Robinson W. .
GLOBAL CHANGE BIOLOGY, 2020, 26 (05) :2988-3005
[3]  
Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
[4]  
[Anonymous], 2020, R LANG ENV STAT COMP
[5]   Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: a microcosm experiment [J].
Ardon, Marcelo ;
Helton, Ashley M. ;
Bernhardt, Emily S. .
BIOGEOCHEMISTRY, 2018, 140 (02) :217-232
[6]   Fertilizer legacies meet saltwater incursion: challenges and constraints for coastal plain wetland restoration [J].
Ardon, Marcelo ;
Helton, Ashley M. ;
Scheuerell, Mark D. ;
Bernhardt, Emily S. .
ELEMENTA-SCIENCE OF THE ANTHROPOCENE, 2017, 5
[7]   Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands [J].
Ardon, Marcelo ;
Helton, Ashley M. ;
Bernhardt, Emily S. .
BIOGEOCHEMISTRY, 2016, 127 (2-3) :411-426
[8]   Drought-induced saltwater incursion leads to increased wetland nitrogen export [J].
Ardon, Marcelo ;
Morse, Jennifer L. ;
Colman, Benjamin P. ;
Bernhardt, Emily S. .
GLOBAL CHANGE BIOLOGY, 2013, 19 (10) :2976-2985
[9]   The Water Quality Consequences of Restoring Wetland Hydrology to a Large Agricultural Watershed in the Southeastern Coastal Plain [J].
Ardon, Marcelo ;
Morse, Jennifer L. ;
Doyle, Martin W. ;
Bernhardt, Emily S. .
ECOSYSTEMS, 2010, 13 (07) :1060-1078
[10]   KBase: The United States Department of Energy Systems Biology Knowledgebase [J].
Arkin, Adam P. ;
Cottingham, Robert W. ;
Henry, Christopher S. ;
Harris, Nomi L. ;
Stevens, Rick L. ;
Maslov, Sergei ;
Dehal, Paramvir ;
Ware, Doreen ;
Perez, Fernando ;
Canon, Shane ;
Sneddon, Michael W. ;
Henderson, Matthew L. ;
Riehl, William J. ;
Murphy-Olson, Dan ;
Chan, Stephen Y. ;
Kamimura, Roy T. ;
Kumari, Sunita ;
Drake, Meghan M. ;
Brettin, Thomas S. ;
Glass, Elizabeth M. ;
Chivian, Dylan ;
Gunter, Dan ;
Weston, David J. ;
Allen, Benjamin H. ;
Baumohl, Jason ;
Best, Aaron A. ;
Bowen, Ben ;
Brenner, Steven E. ;
Bun, Christopher C. ;
Chandonia, John-Marc ;
Chia, Jer-Ming ;
Colasanti, Ric ;
Conrad, Neal ;
Davis, James J. ;
Davison, Brian H. ;
DeJongh, Matthew ;
Devoid, Scott ;
Dietrich, Emily ;
Dubchak, Inna ;
Edirisinghe, Janaka N. ;
Fang, Gang ;
Faria, Jose P. ;
Frybarger, Paul M. ;
Gerlach, Wolfgang ;
Gerstein, Mark ;
Greiner, Annette ;
Gurtowski, James ;
Haun, Holly L. ;
He, Fei ;
Jain, Rashmi .
NATURE BIOTECHNOLOGY, 2018, 36 (07) :566-569