GR-Fe3O4@C/PLA 3D printed composites for broadband microwave absorption

被引:0
|
作者
Wang, Yuemei [1 ]
Ye, Yongsheng [1 ,2 ]
Yan, Tangming [1 ]
Gao, Qi [1 ]
Ye, Xicong [1 ,2 ]
He, Enyi [1 ,2 ]
Wu, Haihua [1 ,2 ]
机构
[1] China Three Gorges Univ, Coll Mech & Power Engn, Yichang 443002, Peoples R China
[2] China Three Gorges Univ, Hubei Engn Res Ctr Graphite Addit Mfg Technol & Eq, Yichang 443002, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS | 2024年 / 308卷
关键词
Microwave absorption; Core-shell structure; 3D printing; Graphene; HOLLOW MICROSPHERES;
D O I
10.1016/j.mseb.2024.117582
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Both magnetic and dielectric materials play crucial roles in the field of microwave absorption and are highly favored by researchers. Fe3O4 is a typical magnetic dielectric material characterized by high magnetic saturation strength. Graphene (GR), as a dielectric material, is known for its low density, high specific surface area, and excellent electrical conductivity. 3D printing technology, with its advantages of high design flexibility and low cost, holds significant promise in the field of microwave absorption. This paper utilizes these characteristics to prepare Fe3O4@C core-shell structural composites through a solvent evaporation method and high-temperature carbonization process. Subsequently, physical mixing and high-temperature extrusion are employed to fabricate GR-Fe3O4@C/PLA composites. The study investigates the impact of Fe3O4, core-shell structure, and graphene content on the microwave absorption performance of these composites. Additionally, the electromagnetic loss mechanism is comprehensively analyzed. Experimental findings indicate that the composites achieve optimal microwave absorption performance with a graphene content of 4 wt% (GR- Fe3O4@C/PLA-4). At a thickness of 2 mm, the material demonstrates a minimum reflection loss (RLmin) of -33.16 dB at 15.36 GHz, accompanied by an effective absorption bandwidth (EAB) of 4.8 GHz (ranging from 13.2 GHz to 18 GHz). Moreover, at a sample thickness of 2.5 mm, the effective absorption bandwidth expands to 6.4 GHz (ranging from 8.48 GHz to 14.88 GHz). These experimental results underscore the potential of these composites in microwave absorption applications, particularly in environments requiring broadband microwave absorption capabilities.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Yang, Chuncheng
    Wang, Qingrui
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 88 : 198 - 205
  • [42] Tuning mechanical properties of 3D printed composites with PLA:TPU programmable filaments
    Darnal, Aryabhat
    Shahid, Zaryab
    Deshpande, Himani
    Kim, Jeeeun
    Muliana, Anastasia
    COMPOSITE STRUCTURES, 2023, 318
  • [43] Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Wang, Qingrui
    Dilmurat, Abliz
    Li, Dichen
    Ziegmann, Gerhard
    JOURNAL OF CLEANER PRODUCTION, 2017, 142 : 1609 - 1618
  • [44] Effect of protective coatings on the water absorption and mechanical properties of 3D printed PLA
    Vicente, Carlos M. S.
    Fernandes, Joao
    Reis, Luis
    de Deus, Augusto Moita
    Vaz, M. F.
    Leite, Marco
    FRATTURA ED INTEGRITA STRUTTURALE, 2019, 13 (48): : 748 - 756
  • [45] Impact energy absorption in 3D printed bio-inspired PLA structures
    Kazantseva, N. V.
    Onishchenko, A. O.
    Zelepugin, S. A.
    Cherepanov, R. O.
    Ivanova, O. V.
    POLYMER, 2025, 316
  • [46] Development of Fe/Fe3O4@C composite with excellent electromagnetic absorption performance
    Feng, Ailing
    Jia, Zirui
    Zhao, Yue
    Lv, Hualiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 745 : 547 - 554
  • [47] 3D printed PyC/Al2O3 ceramic metamaterials with different micro-channels for tunable microwave absorption
    Zhou, Qian
    Liu, Heqiang
    Gu, Yue
    Duan, Wenyan
    Liu, Xingmin
    Ye, Fang
    Fan, Xiaomeng
    Du, Lifei
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (01) : 270 - 276
  • [48] 3D printed polyetherimide-based multiscale structural-functional integrated absorber for broadband microwave absorption
    Zhang, Jiahang
    Li, Dongsheng
    Wang, Mingming
    ADDITIVE MANUFACTURING, 2025, 97
  • [49] Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites
    Huang, Lina
    Liu, Xiaofang
    Yu, Ronghai
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2018, 28 (03) : 288 - 295
  • [50] Enhanced microwave absorption properties of rod-shaped Fe2O3/Fe3O4/MWCNTs composites
    Lina Huang
    Xiaofang Liu
    Ronghai Yu
    Progress in Natural Science:Materials International, 2018, 28 (03) : 288 - 295