Applicability and potential of monitored reconstruction in computed tomography

被引:0
作者
Gilmanov, Marat [1 ,2 ]
Bulatov, Konstantin [1 ,3 ]
Bugai, Oleg [1 ,2 ]
Ingacheva, Anastasia [1 ,2 ]
Chukalina, Marina [1 ,3 ]
Nikolaev, Dmitrii [1 ,3 ]
Arlazarov, Vladimir [1 ,3 ]
机构
[1] Smart Engines Serv LLC, Moscow, Russia
[2] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[3] RAS, Fed Res Ctr Comp Sci & Control, Moscow, Russia
来源
PLOS ONE | 2024年 / 19卷 / 07期
关键词
DOSE REDUCTION; CT;
D O I
10.1371/journal.pone.0307231
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monitored tomographic reconstruction (MTR) is a potentially powerful tool for dose and time reduction in computed tomography scanning. We are the first to study the issue of practical implementation of MTR protocols in current-generation real-life instruments. We propose an empirical quantitative model for calculating acquisition and reconstruction times. It is demonstrated that projection acquisition order has a significant impact on the time and dose of tomographic experiments. The new alternative acquisition most suitable for MTR protocols is proposed. To estimate the restrictions and scope of applicability for MTR four typical commercial setups are studied within a proposed model. We construct an experimental stand for achieving a real-time reconstruction, together with validation of the proposed acquisition time model. We demonstrate that real-time reconstruction may be implemented without slowing down an acquisition process. An optimization of reconstruction from partial data is proposed, which allowed the production of 385 and 440 reconstructions for standard and proposed acquisition orders correspondingly during a single acquisition of 512 projections. The results of the study demonstrate that with proposed optimizations MTR can be effectively utilized for practical applications using the current generation of existing setups in industrial and nano tomography fields.
引用
收藏
页数:20
相关论文
共 50 条
[21]   Perovskite computed tomography imager and three-dimensional reconstruction [J].
He, Yuhong ;
Song, Jinmei ;
Li, Mingbian ;
Sakhatskyi, Kostiantyn ;
Li, Weijun ;
Feng, Xiaopeng ;
Yang, Bai ;
Kovalenko, Maksym ;
Wei, Haotong .
NATURE PHOTONICS, 2024, 18 (10) :1052-1058
[22]   Image Fusion for Low-Dose Computed Tomography Reconstruction [J].
Ma, Jianhua ;
Huang, Jing ;
Liang, Zhengrong ;
Zhang, Hua ;
Fan, Yi ;
Feng, Qianjin ;
Chen, Wufan .
2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, :4239-4243
[23]   DYRECT Computed Tomography: DYnamic Reconstruction of Events on a Continuous Timescale [J].
Goethals, Wannes ;
Bultreys, Tom ;
Berg, Steffen ;
Boone, Matthieu N. ;
Aelterman, Jan .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2025, 11 :638-649
[24]   Essentials of Algebraic Reconstruction in Cone-Beam Computed Tomography [J].
Chernukha, A. E. ;
Shestopalov, A. I. ;
Adarova, A. I. ;
Shershnev, R. V. ;
Kizilova, Ya. V. ;
Koryakin, S. N. ;
Ivanov, S. A. ;
Solovev, A. N. .
BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2023, 50 (10) :438-444
[25]   Keywords: Multidetector Computed Tomography Liver Deep-learning Image Reconstruction Radiation Exposure [J].
Nagayama, Yasunori ;
Goto, Makoto ;
Sakabe, Daisuke ;
Emoto, Takafumi ;
Shigematsu, Shinsuke ;
Taguchi, Narumi ;
Maruyama, Natsuki ;
Takada, Sentaro ;
Uchimura, Ryutaro ;
Hayashi, Hidetaka ;
Kidoh, Masafumi ;
Oda, Seitaro ;
Nakaura, Takeshi ;
Funama, Yoshinori ;
Hatemura, Masahiro ;
Hirai, Toshinori .
EUROPEAN JOURNAL OF RADIOLOGY, 2022, 151
[26]   Deep learning image reconstruction for quality assessment of iodine concentration in computed tomography: A phantom study [J].
Jeon, Pil-Hyun ;
Lee, Chang-Lae .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (02) :409-422
[27]   The potential of computed tomography in odontometry: application to a Mesolithic dog [J].
Pereira, Hugo Matos ;
Requicha, Joao Filipe ;
Alves, Lara ;
Goncalves, David ;
Correia, Joana Belo ;
Alexandre-Pires, Graca ;
de Jesus, Sandra ;
Viegas, Carlos ;
Ramalho, Miguel ;
Ginja, Catarina ;
Detry, Cleia ;
Pires, Ana Elisabete .
JOURNAL OF ARCHAEOLOGICAL SCIENCE-REPORTS, 2022, 45
[28]   The Role of Artificial Intelligence in Coronary Calcium Scoring in Standard Cardiac Computed Tomography and Chest Computed Tomography With Different Reconstruction Kernels [J].
Lin, Yenpo ;
Lin, Gigin ;
Peng, Meng-Ting ;
Kuo, Chi-Tai ;
Wan, Yung-Liang ;
Cherng, Wen-Jin .
JOURNAL OF THORACIC IMAGING, 2024, 39 (02) :111-118
[29]   Generative adversarial networks improve interior computed tomography angiography reconstruction [J].
Ketola, Juuso H. J. ;
Heino, Helina ;
Juntunen, Mikael A. K. ;
Nieminen, Miika T. ;
Siltanen, Samuli ;
Inkinen, Satu I. .
BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (06)
[30]   Predicting calyceal access for percutaneous nephrolithotomy with computed tomography multiplanar reconstruction [J].
Guglielmetti, Giuliano B. ;
Danilovic, Alexandre ;
Torricelli, Fabio C. M. ;
Coelho, Rafael F. ;
Mazzucchi, Eduardo ;
Srougi, Miguel .
CLINICS, 2013, 68 (06) :892-895