Precise detection of awareness in disorders of consciousness using deep learning framework

被引:8
作者
Yang, Huan [1 ,2 ,3 ]
Wu, Hang [4 ,5 ]
Kong, Lingcong [2 ,3 ]
Luo, Wen [6 ]
Xie, Qiuyou [7 ]
Pan, Jiahui [8 ,9 ]
Quan, Wuxiu [2 ,3 ]
Hu, Lianting [1 ,2 ,3 ]
Li, Dantong [1 ,2 ,3 ]
Wu, Xuehai [9 ,10 ,11 ,12 ,13 ,14 ]
Liang, Huiying [1 ,2 ,3 ]
Qin, Pengmin [5 ,9 ,15 ,16 ]
机构
[1] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangzhou 510080, Peoples R China
[2] Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Med Big Data Ctr, Guangzhou 510080, Peoples R China
[3] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Artificial Intelligence Med, Guangzhou 510080, Peoples R China
[4] South China Normal Univ, Inst Brain Res & Rehabil, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510631, Peoples R China
[5] South China Normal Univ, Guangdong Key Lab Mental Hlth & Cognit Sci, Guangzhou 510631, Peoples R China
[6] Guangzhou Univ Chinese Med, Affiliated Hosp 1, Guangzhou 528199, Peoples R China
[7] Southern Med Univ, Dept Rehabil, Joint Res Ctr Disorders Consciousness, Zhujiang Hosp,Sch Rehabil Sci, Guangzhou 510220, Peoples R China
[8] South China Normal Univ, Sch Software, Foshan 528225, Peoples R China
[9] Pazhou Lab, Guangzhou 510330, Peoples R China
[10] Fudan Univ, Huashan Hosp, Shanghai Med Coll, Dept Neurosurg, Shanghai, Peoples R China
[11] Fudan Univ, Natl Ctr Neurol Disorders,Neurosurg Inst, Shanghai Clin Med Ctr Neurosurg,Neural Regenerat, Shanghai Key Lab Brain Funct & Restorat & Neural R, Shanghai 200433, Peoples R China
[12] Fudan Univ, State Key Lab Med Neurobiol, Shanghai 200433, Peoples R China
[13] Fudan Univ, MOE Frontiers Ctr Brain Sci, Sch Basic Med Sci, Shanghai 200433, Peoples R China
[14] Fudan Univ, Inst Brain Sci, Shanghai 200433, Peoples R China
[15] South China Normal Univ, Key Lab Brain Cognit & Educ Sci, Minist Educ, Guangzhou 510631, Peoples R China
[16] South China Normal Univ, Ctr Studies Psychol Applicat, Sch Psychol, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Disorders of consciousness; Rs-fMRI; Deep learning; Classification; BRAIN; FMRI;
D O I
10.1016/j.neuroimage.2024.120580
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diagnosis of disorders of consciousness (DOC) remains a formidable challenge. Deep learning methods have been widely applied in general neurological and psychiatry disorders, while limited in DOC domain. Considering the successful use of resting-state functional MRI (rs-fMRI) for evaluating patients with DOC, this study seeks to explore the conjunction of deep learning techniques and rs-fMRI in precisely detecting awareness in DOC. We initiated our research with a benchmark dataset comprising 140 participants, including 76 unresponsive wakefulness syndrome (UWS), 25 minimally conscious state (MCS), and 39 Controls, from three independent sites. We developed a cascade 3D EfficientNet-B3-based deep learning framework tailored for discriminating MCS from UWS patients, referred to as "DeepDOC", and compared its performance against five state-of-the-art machine learning models. We also included an independent dataset consists of 11 DOC patients to test whether our model could identify patients with cognitive motor dissociation (CMD), in which DOC patients were behaviorally diagnosed unconscious but could be detected conscious by brain computer interface (BCI) method. Our results demonstrate that DeepDOC outperforms the five machine learning models, achieving an area under curve (AUC) value of 0.927 and accuracy of 0.861 for distinguishing MCS from UWS patients. More importantly, DeepDOC excels in CMD identification, achieving an AUC of 1 and accuracy of 0.909. Using gradient-weighted class activation mapping algorithm, we found that the posterior cortex, encompassing the visual cortex, posterior middle temporal gyrus, posterior cingulate cortex, precuneus, and cerebellum, as making a more substantial contribution to classification compared to other brain regions. This research offers a convenient and accurate method for detecting covert awareness in patients with MCS and CMD using rs-fMRI data.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Multimodal prediction of residual consciousness in the intensive care unit: the CONNECT-ME study [J].
Amiri, Moshgan ;
Fisher, Patrick M. ;
Raimondo, Federico ;
Sidaros, Annette ;
Hribljan, Melita Cacic ;
Othman, Marwan H. ;
Zibrandtsen, Ivan ;
Albrechtsen, Simon A. ;
Bergdal, Ove ;
Hansen, Adam Espe ;
Hassager, Christian ;
Hojgaard, Joan Lilja S. ;
Jakobsen, Elisabeth Waldemar ;
Jensen, Helene Ravnholt ;
Moller, Jacob ;
Nersesjan, Vardan ;
Nikolic, Miki ;
Olsen, Markus Harboe ;
Sigurdsson, Sigurdur Thor ;
Sitt, Jacobo D. ;
Solling, Christine ;
Welling, Karen Lise ;
Willumsen, Lisette M. ;
Hauerberg, John ;
Larsen, Vibeke Andree ;
Fabricius, Martin Ejler ;
Knudsen, Gitte Moos ;
Kjaergaard, Jesper ;
Moller, Kirsten ;
Kondziella, Daniel .
BRAIN, 2023, 146 (01) :50-64
[2]   Managing disorders of consciousness: the role of electroencephalography [J].
Bai, Yang ;
Lin, Yajun ;
Ziemann, Ulf .
JOURNAL OF NEUROLOGY, 2021, 268 (11) :4033-4065
[3]   A mechanistic model of connector hubs, modularity and cognition [J].
Bertolero, Maxwell A. ;
Yeo, B. T. Thomas ;
Bassett, Danielle S. ;
D'Esposito, Mark .
NATURE HUMAN BEHAVIOUR, 2018, 2 (10) :765-777
[4]   Pharmacologically informed machine learning approach for identifying pathological states of unconsciousness via resting-state fMRI [J].
Campbell, Justin M. ;
Huang, Zirui ;
Zhang, Jun ;
Wu, Xuehai ;
Qin, Pengmin ;
Northoff, Georg ;
Mashour, George A. ;
Hudetz, Anthony G. .
NEUROIMAGE, 2020, 206
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]   Detection of Brain Activation in Unresponsive Patients with Acute Brain Injury [J].
Claassen, Jan ;
Doyle, Kevin ;
Matory, Adu ;
Couch, Caroline ;
Burger, Kelly M. ;
Velazquez, Angela ;
Okonkwo, Joshua U. ;
King, Jean-Remi ;
Park, Soojin ;
Agarwal, Sachin ;
Roh, David ;
Megjhani, Murad ;
Eliseyev, Andrey ;
Connolly, E. Sander ;
Rohaut, Benjamin .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (26) :2497-2505
[7]   Network dynamics scale with levels of awareness [J].
Coppola, Peter ;
Spindler, Lennart R. B. ;
Luppi, Andrea, I ;
Adapa, Ram ;
Naci, Lorina ;
Allanson, Judith ;
Finoia, Paola ;
Williams, Guy B. ;
Pickard, John D. ;
Owen, Adrian M. ;
Menon, David K. ;
Stamatakis, Emmanuel A. .
NEUROIMAGE, 2022, 254
[8]   Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients [J].
Demertzi, Athena ;
Antonopoulos, Georgios ;
Heine, Lizette ;
Voss, Henning U. ;
Crone, Julia Sophia ;
de Los Angeles, Carlo ;
Bahri, Mohamed Ali ;
Di Perri, Carol ;
Vanhaudenhuyse, Audrey ;
Charland-Verville, Vanessa ;
Kronbichler, Martin ;
Trinka, Eugen ;
Phillips, Christophe ;
Gomez, Francisco ;
Tshibanda, Luaba ;
Soddu, Andrea ;
Schiff, Nicholas D. ;
Whitfield-Gabrieli, Susan ;
Laureys, Steven .
BRAIN, 2015, 138 :2619-2631
[9]   Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies [J].
Edlow, Brian L. ;
Claassen, Jan ;
Schiff, Nicholas D. ;
Greer, David M. .
NATURE REVIEWS NEUROLOGY, 2021, 17 (03) :135-156
[10]   Early detection of consciousness in patients with acute severe traumatic brain injury [J].
Edlow, Brian L. ;
Chatelle, Camille ;
Spencer, Camille A. ;
Chu, Catherine J. ;
Bodien, Yelena G. ;
O'Connor, Kathryn L. ;
Hirschberg, Ronald E. ;
Hochberg, Leigh R. ;
Giacino, Joseph T. ;
Rosenthal, Eric S. ;
Wu, Ona .
BRAIN, 2017, 140 :2399-2414