Turing instability analysis and parameter identification based on optimal control and statistics method for a rumor propagation system

被引:2
作者
Li, Bingxin [1 ]
Zhu, Linhe [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
NETWORKS; MODEL;
D O I
10.1063/5.0207411
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study establishes a reaction-diffusion system to capture the dynamics of rumor propagation, considering two possibilities of contact transmission. The sufficient and necessary conditions for a positive equilibrium point are provided, and the Turing instability conditions for this equilibrium point are derived. Furthermore, utilizing variational inequalities, a first-order necessary condition for parameter identification based on optimal control is established. During the numerical simulation process, the correctness of the Turing instability conditions is verified, and optimal control-based parameter identification is applied to the target pattern. Additionally, statistical methods are employed for pattern parameter identification. The identification results demonstrate that optimal control-based parameter identification exhibits higher efficiency and accuracy. Finally, both theories' parameter identification principles are extended to a small-world network, yielding consistent conclusions with continuous space.
引用
收藏
页数:19
相关论文
共 43 条
  • [1] Inferring topological transitions in pattern-forming processes with self-supervised learning
    Abram, Marcin
    Burghardt, Keith
    Ver Steeg, Greg
    Galstyan, Aram
    Dingreville, Remi
    [J]. NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
  • [2] 2-POINT STEP SIZE GRADIENT METHODS
    BARZILAI, J
    BORWEIN, JM
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) : 141 - 148
  • [3] Broyden C. G., 1970, IMA J APPL MATH, V6, P76, DOI [DOI 10.1093/IMAMAT/6.1.76, 10.1093/imamat/6.1.76]
  • [4] Optimal control strategy of state feedback control for surface-mounted PMSM drives based on auto-tuning of seeker optimization algorithm
    Cao, Junhao
    Sun, Xiaodong
    Tian, Xiang
    [J]. INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2021, 66 (04) : 705 - 725
  • [5] Dynamical analysis of a reaction-diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes
    Cao, Meiyu
    Zhao, Jiantao
    Wang, Jinliang
    Zhang, Ran
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 127
  • [6] SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL
    Chang, Lili
    Gong, Wei
    Jin, Zhen
    Sun, Gui-Quan
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) : 1764 - 1790
  • [7] Optimal control of pattern formations for an SIR reaction-diffusion epidemic model
    Chang, Lili
    Gao, Shupeng
    Wang, Zhen
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [8] Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination
    Cheng, Yingying
    Huo, Liang'an
    Zhao, Laijun
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 157
  • [9] System Parameters' Identification and Optimal Tracking Control for Nonlinear Systems
    Cortes Vega, David
    Ramos Paz, Serafin
    Ornelas-Tellez, Fernando
    Jesus Rico-Melgoza, J.
    [J]. IFAC PAPERSONLINE, 2018, 51 (13): : 431 - 436
  • [10] Numerical investigation of the origin of compound relaxation oscillations in a nonlinear oscillator
    Ding, Muchuan
    Han, Xiujing
    Bi, Qinsheng
    [J]. NONLINEAR DYNAMICS, 2023, 111 (15) : 13853 - 13864